Value Modeling for Space Launch System Missions

Myles Scarano, Industrial and Systems Engineering and Engineering Management

Overview

Large scale projects, including the Space Launch System (SLS) are often defined in terms of mass, energy, and cost, rather than value or utility. The attributes describing a particular system are related to a specific value for each set of attributes (Figure 2). By comparing resultant values with specific attribute sets (Figure 3), the usefulness of a launch system for a variety of missions can be determined.

Figure 1: Artist’s rendering of the SLS block 1b

Figure 2: System of developing a value model

Figure 3: Attribute set for a lunar mining mission

Figure 4: sensitivity analyses example for payload coefficient

Impact

A sensitivity analyses is a means of transforming the attribute sets into a linear equation for the model (Figure 4). Resultant equations are a simple and effective way to gauge what the return on a set of missions could be (Figure 5). By including stakeholders’ desires to the equation which defines the value of a particular system, an alternative is given to design by requirements.

\[
\frac{\Delta NPV}{\Delta \text{Payload}} = \frac{NPV_{hi} - NPV_0}{\text{payload}_{hi} - \text{payload}_0} = \frac{NPV_0 - NPV_{low}}{\text{payload}_0 - \text{payload}_{low}}
\]

Figure 5: Resultant value equation for lunar mining mission

Key Findings

The SLS can be tailored to perform a variety of missions, though as a heavy lift launch vehicle it is more valuable to partake in missions requiring the delivery of large payloads across vast distances smaller launch systems are incapable of spanning in a timely fashion.

References

Acknowledgements

This project would not be possible without the assistance of Dr. Paul Collopy, Dr. Bryan Mesmer, and Dr. Dale Thomas of the Department of Industrial and Systems Engineering, UAH. Special thanks to the NASA SE Consortium.