Laboratory observations of temperature and humidity dependencies of nucleation and growth rates of sub-3 nm particles

Huan Yu1, Liang Dai1, Yi Zhao1, Vijay P. Kanawade2, Sachchida N. Tripathi3, Xinlei Ge1, Mindong Chen1, and Shan-Hu Lee4

1 School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China, 2 University Centre for Earth and Space Sciences, University of Hyderabad, Hyderabad, India, 3 Centre for Environmental Science and Engineering and Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, India, 4 Department of Atmospheric Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA

Abstract

Temperature and relative humidity (RH) are the most important thermodynamic parameters in aerosol formation, yet laboratory studies of nucleation and growth dependencies on temperature and RH are lacking. Here we report the experimentally observed temperature and RH dependences of sulfuric acid aerosol nucleation and growth. Experiments were performed in a flow tube in the temperature range from 248 to 313 K, RH from 0.8% to 79%, and relative acidity (RA) of sulfuric acid from 6×10^{-5} to $0.38 \times 10^{-5} \text{ cm}^{-3}$. The impurity levels of base compounds were determined to be $\text{NH}_3 < 23 \text{ pptv}$ (parts per thousand by volume), methylamine $< 1.5 \text{ pptv}$, and dimethylamine $< 0.52 \text{ pptv}$. Our results showed that low temperatures favor nucleation at fixed sulfuric acid concentration but impede nucleation when RA is fixed. It is also shown that binary nucleation of sulfuric acid and water is negligible in planetary boundary layer temperature and sulfuric acid ranges. An empirical algorithm was derived to correlate the nucleation rate with RA, RH, and temperature together. Collision-limited condensation of free-sulfuric acid molecules fails to predict the observed growth rate in the sub-3 nm size range, as well as its dependence on temperature and RH. This suggests that evaporation, sulfuric acid hydration, and possible involvement of other ternary molecules should be considered for the sub-3 nm particle growth.

1. Introduction

New particle formation (NPF) is a significant source of cloud condensation nuclei (CCN) in the atmosphere at the global scale [Merikanto et al., 2009; Yu and Luo, 2009]. NPF takes place in various atmospheric environments from the boundary layer to the upper troposphere and lower stratosphere, from tropical to polar regions, and from rural biogenic environments to extremely polluted megacities [Kanawade et al., 2012; Kulmala et al., 2004; Zhang et al., 2012]. Sulfuric-acid-water ($\text{H}_2\text{SO}_4-\text{H}_2\text{O}$) particle formation has been studied for decades both experimentally and theoretically to investigate the role of $\text{H}_2\text{SO}_4-\text{H}_2\text{O}$ binary homogeneous nucleation (BHN), with or without ions, in the NPF within or beyond the boundary layer [Yu, 2002; Kirkby et al., 2011]. There are still exceptional cases like extremely cold polar or upper troposphere and lower stratosphere conditions, low preexisting aerosol loading or extremely high H_2SO_4 concentration in sulfur plumes where BHN could be important in producing new particles [Dunne et al., 2016]. Direct measurements of the temperature and relative humidity (RH) dependencies of aerosol nucleation rates and growth rates in well-controlled laboratory conditions are required to better understand the NPF processes in the wide range of atmospheric conditions.

Only a few studies have investigated the temperature-dependent nucleation rates [Wyslouzil et al., 1991; Brus et al., 2011; Kirkby et al., 2011; Duplissy et al., 2016]. Kirkby et al. [2011] showed nucleation rates of neutral and ion-induced nucleation of $\text{H}_2\text{SO}_4-\text{H}_2\text{O}$ at three different temperatures of 248, 278, and 293 K in the CERN Cosmics Leaving Outdoor Droplets (CLOUD) chamber. They found that binary nucleation with galactic cosmic rays (i.e., ion-induced nucleation) within the warm boundary layer is negligible but proceeds at significant nucleation rates at 248 K and atmospheric $[\text{H}_2\text{SO}_4]$ of 10^7 cm^{-3}. More recently, Duplissy et al. [2016] measured pure binary nucleation rates by sulfuric acid and water for neutral and ion-induced pathways at 207 K–299 K in the CLOUD chamber, where ion cluster chemical composition measured with atmospheric pressure interface time-of-flight (API-TOF) was used to identify binary versus ternary nucleation systems. Their results show...
that nucleation rates increase with increasing RH and H$_2$SO$_4$ concentrations, while nucleation rates decrease with increasing temperatures at a fixed RH and H$_2$SO$_4$ concentration. Duplissy et al. [2016]’s results agree with quantum chemistry-normalized classical nucleation theory (CNT) [Merikanto et al., 2016], which suggests that nucleation mechanisms, and hence J dependencies on RH and H$_2$SO$_4$ differ in different temperature and [H$_2$SO$_4$] ranges.

Due to rapid coagulation losses to preexisting particles, particle growth rates in the sub-3 nm size range are crucial for determining the contribution of NPF to CCN (typically 50–100 nm), but this initial growth process is not well understood. Growth rates due to H$_2$SO$_4$ have been typically estimated assuming a collision-limited condensation process [Nieminen et al., 2010]. However, laboratory experiments showed that the observed growth rates of sub-3 nm particles are not consistent with the predictions of collision-limited H$_2$SO$_4$ condensation [Spila et al., 2010; Wimmer et al., 2015; Lehtipalo et al., 2016; Ehn et al., 2014; Berndt et al., 2014; Tröstl et al., 2016]. A recent study has shown that sub-3 nm particle growth rates can be enhanced up to 1 order of magnitude higher by stabilizing base compounds like dimethylamine [Lehtipalo et al., 2016]. Recent laboratory measurements have shown that highly oxygenated organics not only participate in nucleation but also assist postnucleation growth [Ehn et al., 2014; Berndt et al., 2014; Tröstl et al., 2016]. In addition, growth rates are affected by H$_2$SO$_4$ evaporation at high temperatures [Wimmer et al., 2015].

Water is the other important precursor in H$_2$SO$_4$-H$_2$O BHN. While water is far more abundant and volatile than H$_2$SO$_4$ in the atmosphere, water stabilizes transitional clusters [Vaida, 2011] to increase nucleation rates. Calculations have also shown that the growth rate due to condensation of H$_2$SO$_4$ attached to three water molecules is higher by approximately 40% than that of unhydrated free-H$_2$SO$_4$ molecules [Nieminen et al., 2010].

Here we investigated the dependence of nucleation and growth rates on H$_2$SO$_4$ vapor concentration, RH and temperature using a flow tube reactor. We developed an empirical nucleation algorithm, based on these observations, to correlate the nucleation rate with the relative acidity (RA; saturation ratio) of H$_2$SO$_4$, RH, and temperature. We also examined how the observed growth rates of sub-3 nm particles deviate from those predicted from the collision-limited H$_2$SO$_4$ condensation under different temperatures and RH conditions.

2. Methods
2.1. Experimental Setup

The flow tube was constructed based on Young et al. [2008]; Benson et al. [2008], and Yu et al. [2012]. It consists of two components: a H$_2$SO$_4$ generator with OH photolysis and a temperature-controlled nucleation tube (Figure S1). In the H$_2$SO$_4$ generator OH radicals were produced from photodissociation of water vapor in a quartz tube illuminated by a mercury lamp (Pen-Ray Model 11SC-1, 185 nm wavelength selected by a band-pass filter Andover 193FS15). The quartz tube and the lamp were housed in a temperature-regulated enclosure, where nitrogen gas flowed through. The illumination area inside the enclosure was adjusted precisely, by moving the position of a dark tube using a linear actuator (Oriental Motor Model DRL60). The photon flux emitted from the lamp was monitored with a CsI phototube (Hamamatsu Model R5764). A flow of SO$_2$, O$_2$, and N$_2$ gas mixture merged with OH radicals, immediately after water vapor exited the illumination area. There was some CO impurities in the carrier nitrogen gas (99.9999%) vaporized from the liquid nitrogen, estimated to be less than 400 ppbv. The reaction rate coefficient of CO + OH → CO$_2$ + H (2.4×10^{-13} cm$^{-3}$ s$^{-1}$) is nearly a factor of 6 lower than that of SO$_2$ + OH → HSO$_3$ (1.5×10^{-12} cm$^{-3}$ s$^{-1}$) at 298 K [Seinfeld and Pandis, 2006]. Therefore, the majority of OH (86%–92%) would react with SO$_2$ (0.5–1 ppmv).

Computational fluid dynamics analysis using ANSYS FLUENT 15.0 showed that a turbulence zone was created after the injection of SO$_2$/O$_2$/N$_2$ flow and distributed H$_2$SO$_4$ uniformly in the second half part of the H$_2$SO$_4$ generator. The Chemical Ionization Mass Spectrometer (CIMS) was not connected to the nucleation tube for direct H$_2$SO$_4$ measurement during the experiments. This arrangement was made to reduce the total flow rate (i.e., 4–7 standard liters per minute (sLpm)). When the H$_2$SO$_4$ flow entered the nucleation tube, there was turbulence within the first 10 cm of the 94 cm long nucleation tube. Then through the majority of the flow tube (84 out of 94 cm length), the flow was laminar (Reynolds number: 67–130).
The $[\text{H}_2\text{SO}_4]$ was calculated from the OH concentration ([OH]), assuming that the majority of OH radicals were converted to H_2SO_4 as discussed above:

$$[\text{H}_2\text{SO}_4] = I_{189\text{nm}}\sigma_{\text{H}_2\text{O}}[\text{H}_2\text{O}] \times \Delta t$$ \hspace{1cm} (1)

$[\text{H}_2\text{SO}_4]$ was adjusted by varying the position of the dark tube (hence, Δt) and the water vapor concentration $[\text{H}_2\text{O}]$. The water vapor concentration ($[\text{H}_2\text{O}]$, cm$^{-3}$) was monitored with a dew point hygrometer (Vaisala, Drycap® DMT242) and calculated as the following:

$$[\text{H}_2\text{O}] = \frac{6.02 \times 10^{17} P_d}{RT}$$ \hspace{1cm} (2)

where P_d is water saturation vapor pressure (Pa) at the dew point and T is the flow tube temperature (K). $I_{189\text{nm}}\Delta t$ is the product of the light photon flux and the illumination time Δt and is obtained from the calibration using O$_2$ to O$_3$ actinometry ($I_{189\text{nm}}\Delta t = \frac{[\text{O}_3]}{[\text{O}_2][\text{O}_3][\text{O}_2]}$) prior to the nucleation/growth experiments. This way, the determination of absolute photon flux was not needed. Error sources of the estimated $[\text{H}_2\text{SO}_4]$ include: (i) the UV lamp photon intensity shift and the oxygen absorption cross section variation ($\pm 25\%$), (ii) the linear actuator position repeatability determined from run-to-run experiments of the O$_2$ to O$_3$ actinometry ($\pm 10\%$), (iii) the dew point hygrometer uncertainty ($\pm 5\%$), and (iv) possible OH lost to CO (as opposed to reacting with SO$_2$) in the flow tube (8%–14%). Thus, the overall uncertainty of the H_2SO_4 calibration was estimated to be $\pm 30\%$.

Figure S2 shows the $[\text{H}_2\text{SO}_4]$ measured with the nitrate CIMS at the exit of H_2SO_4 generator versus the $[\text{H}_2\text{SO}_4]$ calculated from the O$_2$ to O$_3$ actinometry calibration. The uncertainty associated with CIMS measurements was estimated to be $\pm 60\%$ [Erupe et al., 2010; Young et al., 2008]. At higher $[\text{H}_2\text{SO}_4]$, CIMS signals were significantly lower than the calibrated values, likely because $[\text{H}_2\text{SO}_4]$ was approaching the upper limit of the CIMS detection. The agreement is reasonable when considering the uncertainties in two entirely independent methods.

The nucleation tube temperature was varied within 248–313 K with a circulating bath using ethanol as the working fluid. This temperature range covers the range of boundary layer temperature conditions. Before entering the nucleation tube, the main carrier gas flowed through a coiled stainless steel tube that was immersed in the circulating bath. This preheated or precooled carrier gas partly compensated for the temperature gradient at the beginning of nucleation tube. We probed the temperatures along the tube axis and found that the temperature at the 5 cm into the nucleation tube was within 2°C of the desired temperatures. To adjust the RH in the nucleation tube, nitrogen gas was flowed through deionized water in a water bubbler before entering the flow tube. Another dew point hygrometer measured the water vapor concentration at the exit of the nucleation tube (Figure S1).

An nCNC counter (also known as particle size magnifier, PSM; Airmodus A20) [Vanhainen et al., 2011] was attached to the exit of the nucleation tube. The nCNC was operated in a scanning mode with a cycle of 240 steps between the saturator flow rates from 0.1 to 1.0 sLpm within 240 s. The particle cutoff size of nCNC is dependent on the saturator flow rate. For example, at a saturator flow of 0.1 and 1.0 sLpm, the cutoff sizes are 2.94 nm and 1.38 nm, respectively. An inversion method based on Lehtipalo et al. [2014] and Yu et al. [2016] was used to obtain the particle size spectra (time resolution 4 min) in six size bins: 1.4–1.6, 1.6–1.9, 1.9–2.2, 2.2–2.4, 2.4–2.7, and 2.7–3.0 nm. The inverted particle number concentrations in these six bins were referred as $N_{1.5}$, $N_{1.8}$, $N_{2.0}$, $N_{2.3}$, $N_{2.6}$, and $N_{2.8}$, respectively. The residence time varied from 45 to 70 s in the nucleation tube. Under these conditions, the majority of nucleated particles did not grow to larger than 3 nm. That is, particle counts at a saturator flow rate of 0.1 sLpm (PSM measures particles larger than 3.0 nm) were less than 10% of particles counts at 1.0 sLpm (particles larger than 1.4 nm). Even at the lowest sample flow temperature (248 K), background particles generated via homogeneous nucleation from the working fluid (DEG) were negligible. At different sample flow temperatures, the growth tube and inlet temperatures of nCNC were kept constant. Therefore, the cutoff size of the nCNC did not change at different experimental conditions.

One of the common issues in nucleation experiments is that there are always unavoidable impurities of base compounds (e.g., ammonia and amines) present in the nucleation reactor or chamber [Yu et al., 2012; Almeida et al., 2013; Jen et al., 2014; Kirkby et al., 2011; Zollner et al., 2012; Bianchi et al., 2014; Duplissy et al., 2016; Glasoe et al., 2016].
et al., 2015]. Base compounds, even at the sub-pptv (parts per thousand by volume) level can affect H$_2$SO$_4$–H$_2$O nucleation rates [Almeida et al., 2013; Jen et al., 2014; Glasoe et al., 2015]. We produced particles from H$_2$SO$_4$ and water vapor, while base compounds like amines or ammonia were not introduced throughout the experimental period. The impurity concentrations of the ammonia (NH$_3$) and amines were determined with offline analytical methods: high-performance liquid chromatography (HPLC) and ion chromatography (IC). The impurity NH$_3$, methylamine, and dimethylamine mixing ratios were below 23 pptv, 1.5 pptv and 0.52 pptv, respectively. Text S1 in the supporting information describes how we minimized and quantified the concentrations of base impurities.

2.2. Determination of Nucleation Rate and Growth Rate

We obtained both nucleation rates and growth rates from our flow tube experiments. Growth rates in a nucleation chamber have been determined from the observed time evolution of maximum concentrations (or half maxima) in successive size bins using particle instruments such as PSM, Neutral Air Ion Spectrometer (NAIS), or Condensation Particle Counter (CPC) battery [Kulmala et al., 2012; Lehtipalo et al., 2014]. Alternatively, growth rates were calculated from the observed particle size distributions at a known residence time in a flow tube by varying [H$_2$SO$_4$] [Sipila et al., 2010]. In the present flow tube study, we used the latter method.

H$_2$SO$_4$ vapor was produced as a point source at the entrance of the nucleation tube. Wall loss in the laminar flow of the nucleation tube was quantified as the following [Young et al., 2008]:

$$[H_2SO_4]_t = [H_2SO_4]_0 e^{-k_L t}$$

where [H$_2$SO$_4$]$_0$ and [H$_2$SO$_4$]$_t$ are the initial concentration and the concentration after time t in the nucleation tube, respectively. k_L is the diffusion-limited wall loss coefficient [Hanson and Eisele, 2000]:

$$k_L = 3.65D/r^2$$

where r is the radius of the nucleation tube and D is the diffusion coefficient. Humidity- and temperature-dependent D was calculated from Hanson and Eisele [2000]. The maximum loss of H$_2$SO$_4$ to particles can be estimated by comparing particle mass concentration at the exit of the nucleation tube and [H$_2$SO$_4$]$_0$ at the entrance. Assuming that all particles were 2 nm diameter spheres composed only of pure H$_2$SO$_4$ with density of 1.84 g cm$^{-3}$, at most 4.4% of H$_2$SO$_4$ molecules were depleted by particle formation, neglecting water and other possible molecules in the particles. If considering the diffusional loss of H$_2$SO$_4$ to the wall was 55–80% for the given residence time, H$_2$SO$_4$ loss onto particles was neglected in further analysis of this study. The same treatment was made in recent nucleation flow tube studies like Young et al. [2008], Skrabalova et al. [2014], Neitola et al. [2015], and Brus et al. [2016].

Particle growth rate G_R at time t in the nucleation tube is related to [H$_2$SO$_4$]$_0$ via

$$G_R = \frac{dD_p}{dt} = k_{G,obs}[H_2SO_4]_0/10^7 \text{cm}^{-3}$$

(5)

Here the observed growth rate factor due to 107 cm$^{-3}$ H$_2$SO$_4$ monomer ($k_{G,obs}$) was assumed to be constant within 1–3 nm. From equations (3)–(5), diameter change $\Delta D_{p,t}$, after a residence time t, is integrated as the following:

$$\Delta D_{p,t} = \int_0^t k_{G,obs}[H_2SO_4]_0/10^7 \text{cm}^{-3} dr = k_{G,obs}[H_2SO_4]_0/10^7 \text{cm}^{-3} \frac{1 - e^{-k_L t}}{k_L}$$

(6)

Rearranging equation (6) yields

$$k_{G,obs} = \frac{\Delta D_{p,t} \times 10^7 \text{cm}^{-3}}{[H_2SO_4]_0} \frac{1}{1 - e^{-k_L t}}$$

(7)

By varying [H$_2$SO$_4$]$_0$ at the entrance of the nucleation tube, particles with different mean diameter $D_{p,mean}$ were generated at the exit of the nucleation tube (Figure 1). $D_{p,mean}$ was calculated from

$$D_{p,mean} = \sum N_i D_{p,i}/\sum N_i$$

(8)

where N_i is the particle number concentration in each size bin i ($i = 1–6$) and $D_{p,i}$ is the mean diameter in the size bin i. The particle mean diameter $D_{p,mean}$ represents the sum of the critical cluster diameter and
Uncertainties of the estimated \[\text{[H}_2\text{SO}_4\text{]}_0\] and \[\text{[H}_2\text{SO}_4\text{]}_0\] at all three temperatures. The intercepts at the diameter axis correspond to the critical size of 1.7 ± 0.1 nm, equivalent to the volume diameter of ~1.4 ± 0.1 nm (Larriba et al., 2011), which are consistent with estimates from other studies (Kulmala et al., 2013). Here we assumed that the critical size was not very sensitive to \text{H}_2\text{SO}_4 or RH changes in our study. The critical size variability may not be detectable, given the accuracy of our PSM measurement. The slope of the linear fitting equal to \[\frac{\text{[H}_2\text{SO}_4\text{]}_0}{n\text{[H}_2\text{SO}_4\text{]}_0}\] in equation (7). Therefore, \[\text{k}_G,\text{obs}\] can be obtained from the product of the slope and the term \[\frac{\text{[H}_2\text{SO}_4\text{]}_0}{n\text{[H}_2\text{SO}_4\text{]}_0}\]. For the \[\text{[H}_2\text{SO}_4\text{]}\] range from \[8 \times 10^7\] to \[5 \times 10^8\] cm\(^{-3}\) (Figure 1), \[\text{k}_C\] was derived to be 1.07 to 0.58 nm h\(^{-1}\) for temperatures between 248 and 293 K.

The uncertainty of \[\text{k}_G,\text{obs}\] in equation (7) comes from (1) the uncertainty of \text{H}_2\text{SO}_4 measurement (±30%) and (2) the uncertainties of \[\text{D}_{p,\text{mean}}\] and mean particle residence time in the nucleation tube. The error in diameter was determined to be in the order of ±0.2 nm for inorganic ions [Kulmala et al., 2014, 2016; Kulmala et al., 2013]. Our \text{H}_2\text{SO}_4 wall loss analysis estimated that 83% of particles were nucleated in the first half of the nucleation tube. The mean residence time \[t_r\] of these particles was within 30% less than the flow residence time (45–70 s). Considering the uncertainties of \[\text{[H}_2\text{SO}_4\text{]}_0\], \[\Delta\text{D}_{p,r}\] and \[t_r\], we estimated that the uncertainty of \[\text{k}_G,\text{obs}\] in equation (7) was ±40%.

The nucleation rate is dependent on \[\text{[H}_2\text{SO}_4\text{]}\] which decays in the nucleation tube following equation (3). Considering \text{H}_2\text{SO}_4 as the controlling precursor, the nucleation rate at time \[t\] \((J_t)\) can be expressed as

\[
J_t = k_N\text{[H}_2\text{SO}_4\text{]}_t^n = J_0e^{-nk_t}
\]

\((9)\)

\[J_0\] is the initial nucleation rate in the nucleation tube at the initial \text{H}_2\text{SO}_4 concentration \[\text{[H}_2\text{SO}_4\text{]}_0\]. The total particle number concentration observed at the exit of nucleation tube can be calculated from

\[
N_{\text{tot}} = \int_0^t J_t \text{d}t = J_0t_r \frac{1-e^{-nk_t}}{nk_t}
\]

\((10)\)

Given \[t_r = 45–70\ s\], \[k_t = 0.014–0.02\ s^{-1}\], and \[n = -3\], the term \(e^{-nk_t}\) can be neglected, which leads to the following approximation:

\[
N_{\text{tot}} \approx \frac{J_0}{nk_t} = \frac{k_N\text{[H}_2\text{SO}_4\text{]}_0^n}{nk_t}
\]

\((11)\)

We obtained the nucleation theorem power \(n\) from linear fitting between \(\log N_{\text{tot}}\) and \(\log[\text{H}_2\text{SO}_4]_0\) (that is, \(n = \frac{\Delta \log[\text{H}_2\text{SO}_4]_0}{\Delta \log N_{\text{tot}}\text{[H}_2\text{SO}_4\text{]}_0}\)). The \(n\) varied from 2.8 to 3.5 between different experiment sets. Then \(J_0\) was calculated from the product \(N_{\text{tot}} \times nk_t\). To evaluate the dependence of nucleation rate on \text{H}_2\text{SO}_4, we used \[\text{[H}_2\text{SO}_4\text{]}_0\] and \(J_0\) in this work (not the average nucleation rate from \(N_{\text{tot}}/t_r\)). The critical size of nucleation was ~1.7 nm from our flow tube experiments, as shown earlier (Figure 1). Thus, the particles in the first size bin of 1.4–1.6 nm (\(2 \times 10^2 \text{ to } 3 \times 10^3\) cm\(^{-3}\) or 3–21% of the total number concentration) were regarded as prenucleation clusters. \(N_{\text{tot}}\) was calculated from the sum of the other five bins \((N_{1.4}, N_{2.0}, N_{2.3}, N_{2.6},\text{ and } N_{2.9})\). Uncertainties of the estimated \(J_0\) were from the following: (i) the statistical error of \(N_{\text{tot}}\) between run-
to-run experiments (±20%), which was likely due to PSM counting noises and inversion uncertainties [Lehtipalo et al., 2014], (ii) the \(k_L\) uncertainty (±7%) [Hanson and Eisele, 2000], and (iii) the omission of \(e^{-\lambda t}\) in equation (11) (up to 16%). The overall uncertainty of \(J_0\) was ± 27%.

3. Results

3.1. Temperature-, \(H_2SO_4\)-, and Humidity-Dependent Growth Rates

In Figure 2a we compared our observed growth rate factor (\(k_{G,obs}\)) at 248–313 K and a fixed water vapor pressure (62 Pa; corresponding vapor concentration 1.5 × 10^{16} – 1.8 × 10^{16} cm^{-3}) with the theoretical growth rate factor (\(k_{G,cond}\)) due to collision-limited condensation of \(10^7\text{cm}^{-3}\) \(H_2SO_4\) in the 1–3 nm size range. \(k_{G,cond}\) was calculated following equation (8) of Nieminen et al. [2010]. It was noted that our observed \(k_{G,obs}\), the apparent growth rate, may also include the contribution of particle self-coagulation [Leppä et al., 2011; Kontkanen et al., 2016]. The nucleation mode growth rate due to self-coagulation can be calculated using an analytical resolution by Stolzenburg et al. [2005]. Assuming an average size of 2 nm and particle number concentration of \(10^4\text{cm}^{-3}\), we estimated that the growth rate due to self-coagulation is ~0.01 nm h^{-1}. This is negligible in the observed apparent growth rate, which is in the order of tens of nm h^{-1}.

We find that \(k_{G,cond}\) and \(k_{G,obs}\) are within the same order of magnitude, but they have opposite temperature dependencies. When the temperature increased from 248 to 313 K, \(k_{G,cond}\) increased slightly from 0.6 to ~0.7 nm h^{-1}, whereas \(k_{G,obs}\) decreased dramatically from ~1 to 0.3. Our results were very similar to that published by Wimmer et al. [2015], although the focuses of these two studies were different. Therefore, the collision-limited condensation underestimates \(H_2SO_4\) growth rate at low temperatures (<293 K) but overestimates at high temperatures (>293 K). The deviations most likely result from two factors: (1) evaporation of \(H_2SO_4\) at high temperatures and (2) other secondary or ternary species (like water and possibly base compounds) that assist the growth of sub-3 nm particles at low temperatures. A correction factor \(f(T)\) was derived from our experimental results to correct the GR deviation from the collision-limited \(H_2SO_4\) condensation:

\[
GR = f(T) \times k_{G,cond}[H_2SO_4]/10^7\text{cm}^{-3}
\]

(12)

where \(f(T) = -0.019T + 6.552\). Note that these experimentally derived growth rate factors were obtained at a fixed water vapor pressure (62 Pa) and a specific range of [\(H_2SO_4\)] (8 × 10^{16}–5 × 10^{18} cm^{-3}).

To evaluate the effect of evaporation and water condensation on the \(H_2SO_4\) growth rate, we further calculated the evaporation-corrected \(k_{G,H2SO4\cdot3H2O}\) of \(H_2SO_4\cdot3H_2O\) [Nieminen et al., 2010]:

![Figure 2.](image-url)
Here $[\text{H}_2\text{SO}_4]$ of $3 \times 10^8 \text{ cm}^{-3}$ was used (representative of the experimental range $0.8–5 \times 10^8 \text{ cm}^{-3}$). $\text{GR}_{\text{H}_2\text{SO}_4, 3\text{H}_2\text{O}}$ was calculated for 2 nm particles (an average of 1 and 3 nm). $[\text{H}_2\text{SO}_4]_{\text{surface}}$ is the H$_2$SO$_4$ concentration over the surface of a 2 nm particle, which is assumed to be composed of a binary solution of H$_2$SO$_4$ and water. The composition of the binary solution was estimated so that particle-phase water is in equilibrium with the water vapor in the gas phase (62 Pa). Saturation vapor pressures of pure water and H$_2$SO$_4$ were adapted from Vehkamäki et al. [2002] and the kinetic term in equation (13) from Nieminen et al. [2010]. As shown in Figure 2a, the corrected $k_{G,\text{H}_2\text{SO}_4, 3\text{H}_2\text{O}}$ has a better agreement with $k_{G,\text{obs}}$, showing similar temperature dependencies. The differences between $k_{G,\text{H}_2\text{SO}_4, 3\text{H}_2\text{O}}$ and $k_{G,\text{obs}}$ at low temperatures ($< 263 \text{ K}$) may be due to cocondensation of more water molecules or other ternary vapors such as NH$_3$ and amines.

When calculating the contribution of H$_2$SO$_4$ to growth rate, one should determine whether H$_2$SO$_4$ is bound to one, two, or three water molecules, depending on RH [Nieminen et al., 2010]. In order to understand RH dependence of the H$_2$SO$_4$ growth rate, we measured $k_{G,\text{obs}}$ by varying RH from 6% to 79% at 298 K (Figure 2b), $k_{G,\text{obs}}$ is compared with the $k_{G,\text{RH predict}}$ predicted by Nieminen et al. [2010], which used the H$_2$SO$_4$-hydrate distribution at 298 K from Kurtén et al. [2007]. As shown in Figure 2b, $k_{G,\text{obs}}$ is more sensitive to RH than $k_{G,\text{RH predict}}$. While at low RH of 6% $k_{G,\text{obs}}$ is close to $k_{G,\text{RH predict}}$ at RH of 30% $k_{G,\text{obs}}$ approaches $k_{G,\text{RH predict}}$ with three water molecules. The further increase of $k_{G,\text{obs}}$ at RH > 30% indicates that H$_2$SO$_4$ molecule is associated with more than three water molecules. In our previous study Yu et al. [2012] has shown that base impurities dissolved in deionized water in the water bubbler was the major contamination source in the flow tube. Therefore, we expect a higher concentration of base impurities at higher RH. The clustering of base molecules with H$_2$SO$_4$ could also be the reason of larger discrepancy between $k_{G,\text{obs}}$ and $k_{G,\text{RH predict}}$ at higher RH.

3.2. Temperature-, H$_2$SO$_4$, and Humidity-Dependent Nucleation Rates

Our J_0 versus $[\text{H}_2\text{SO}_4]_0$ data are compared with previous laboratory studies involving the temperature dependence of binary nucleation rates [Kirkby et al., 2011; Sipila et al., 2010; Brus et al., 2011; Zollner et al., 2012;
All these experiments used a PSM with cutoff diameters near the critical size, except that Zollner et al. [2012] used an ultrafine CPC. Among them, Kirkby et al. [2011], Zollner et al. [2012], and our work measured base impurity levels. Duplissy et al. [2016] obtained the “pure” binary nucleation rate at 249 K by excluding contaminated experiment runs based on the molecular identification of charged clusters using an API-TOF. These experiments showed quite different nucleation rates, up to 4 orders of magnitude, at the same [H2SO4] levels. Such a difference could be due to measurement methods (e.g., chamber study versus flow tube study), impurity levels, and RH (annotated in Figure 3).

Our data are consistent with Kirkby et al. [2011] at the lowest temperature of 248 K. Given the same [H2SO4] at 278 and 293 K, our nucleation rate was within 20 times higher than Kirkby et al. [2011]. Or given the same nucleation rate, [H2SO4] was within about 1 order of magnitude between our study and Kirkby et al. [2011]. This discrepancy may be because of the cleaner conditions in the CLOUD chamber (e.g., NH3 and dimethylamine were <2 pptv and <0.1 pptv, respectively, in the CLOUD chamber [Almeida et al., 2013]). In addition, the different way of determining nucleation rates could be another source of uncertainty, e.g., initial nucleation rate at the beginning of fast flow nucleation tube versus nucleation rate derived from the time evolution of particle number concentrations in a large chamber. The slopes of log J versus log [H2SO4] in our experiments (2.8–3.1) at the three temperatures are within the range of 2.7–5.0 by Kirkby et al. [2011]. In contrast, the slopes of log J versus log [H2SO4] measured by Brus et al. [2011] and Sipila et al. [2010] ranged from 1.2 to 2.2 for temperature of 278–298 K. The slopes were <1 at 207 K in Duplissy et al. [2016]. This implies that nucleation in their work is kinetically limited, due to high concentration of stabilizing molecules [Brus et al., 2011] or low temperature [Duplissy et al., 2016].

Figure 4a shows log J versus 1/T at [H2SO4] of 4.6 × 10^7–9.4 × 10^8 cm^3 at the (a) water vapor pressure of 61 Pa, and the dependence of log J on log RA at three temperatures of 248, 268, and 293 K (b). The error bars are uncertainties associated with nucleation rate and [H2SO4] measurements.
In this work we did not test the dependence of nucleation (strong dependence on temperature), whereas under high temperatures (<207 K) a barrierless kinetic nucleation can take place (hence, weak J dependence on temperature), whereas under high temperatures (>248 K) there is a Gibbs free energy barrier in nucleation (strong J dependence on temperature).

In this study we overcame several problems associated with our previous flow reactor studies. HPLC and IC were used to measure the concentrations of ternary molecules (like NH₃, amines, or organic species). It is the first time, to the best of our knowledge, an experimental expression of nucleation rates was derived by simultaneously considering RA, RH, and temperature. The enhancement factor of the nucleation rate due to temperature changes can be directly calculated from equation (15). Equation (15) and Figure 4a imply that the enhancement factor due to the decreasing temperature is independent of [H₂SO₄] (or RA) and RH. For a certain RA and [H₂SO₄], a decrease of 10 K results in a nucleation rate enhancement factor of 3–8, depending on the temperature. A decrease of 20 K from 298 to 278 K resulted in a nucleation rate enhancement factor of ~10. This factor is quite close to those measured by Brus et al. [2011] at the same temperatures. In contrast, the enhancement between 207 K and 223 K measured by Duplissy et al. [2016] is weak. These observations support the predictions of quantum chemistry-normalized CNT [Merikanto et al., 2016], which show that under low temperatures (207–223 K) a barrierless kinetic nucleation can take place (hence, weak J dependence on temperature), whereas under high temperatures (>248 K) there is a Gibbs free energy barrier in nucleation (strong J dependence on temperature).

4. Conclusions

We have measured nucleation and growth rates of sub-3 nm particles produced from H₂SO₄ in a laminar nucleation tube. Experiments were conducted in the temperature range from 248 to 313 K, RH from 0.8% to 79%, and RA from 6 × 10⁻⁴ to 0.38. The observed slope of log J versus log [H₂SO₄] did not vary much (2.8–3.5) for the temperature range from 248 to 298 K, while the slope of log J versus log [H₂O] was close to 1. For the same RA and RH, higher temperatures are favorable for nucleation, as predicted from classical homogeneous nucleation theories. An algorithm of nucleation rate as the function of RA, RH, and temperature was derived on the basis of our experimental results (equation (15)).

The cluster size distribution measurements show that the nucleation critical cluster is around 1.7 ± 0.1 nm. Growth rates of sub-3 nm particles exhibit a linear correlation with [H₂SO₄] for the [H₂SO₄] range from 8 × 10⁷ to 5 × 10⁸ cm⁻³, and the growth rate factor (GR/[H₂SO₄]) is dependent on temperature (equation (12), Figure 2a) and RH (Figure 2b). Collision-limited condensation of unhydrated H₂SO₄ molecules fails to predict such dependencies. Our results strongly suggest that the effects of evaporation, H₂SO₄ hydration, and other ternary molecules (like NH₃ and amines) must be considered in sub-3 nm particle growth.

Laboratory data with low and, more importantly, known impurity level are critical to obtain realistic parameterizations of particle formation rates for modeling purposes. In this study we overcame several problems associated with our previous flow reactor studies. HPLC and IC were used to measure the concentrations...
of contaminant species (NH$_3$, methylamine, and dimethylamine), and experiments were done only when those species were below detectable levels. We used an up-to-date instrument PSM to count particles in the 1–3 nm range. Mathematical treatment was used to derive accurate nucleation rates and corresponding H$_2$SO$_4$ concentrations. The vast discrepancy of nucleation rates reported for binary systems in the past is now narrowed down considerably. Given the same nucleation rate, our [H$_2$SO$_4$] agrees now with Kirkby et al. [2011] and Duplissy et al. [2016] within about 1 order of magnitude. Recently, the dependence of binary nucleation rate on [H$_2$SO$_4$] and temperature (but not RH) was parameterized by Dunne et al. [2016] and fitted to CERN CLOUD measurements. However, it is the first time that an experimental expression of nucleation rates was derived in our study by simultaneously considering RA, RH, and temperature. The observation of sub-3 nm growth rates also added to the novelty of our study, as they have been studied far less than nucleation rates. Our study adds to the growing number of studies on nucleation and growth rates for the binary system of H$_2$SO$_4$ and H$_2$O and addresses the timely question of RH and T dependence of nucleation and growth rates.

Acknowledgments
This work was supported by National Science Foundation of China (grant 41405116 and 41675124); Natural Science Foundation of Jiangsu Province (grant BK20140989); the National Key Research and Development Program of China (2016YFC0203100); and the Jiangsu Specially Appointed Professor Grant. S.H.L. thanks NSF (AGS-1137821 and 1241498); We thank Robert McGraw of Brookhaven National Lab for his valuable suggestions in nucleation and growth rate determination. The authors comply with AGU’s data policy and all data of this work could be obtained from H. Yu (hyu@nuist.edu.cn).

References