Kinematics of Super Tuesday Storms

Todd Murphy and Kevin Knupp
University of Alabama in Huntsville

Outline

Introduction

Event overview

- 2 cases: KNQA and KOHX

Data and Methodology

- Synthetic dual-Doppler (SDD) wind retrieval
- Thermodynamic Retrieval

Results

Conclusions

- SDD technique
- Future work

Introduction

- The supercell thunderstorm is one phenomena where research has benefited from multiple-Doppler wind retrievals and various thermodynamic retrieval schemes.
- However, at least two Doppler radars are often not available.
- Peace et al. (1969) was the first to suggest using single Doppler data collected during two time periods to perform wind retrievals - this method has since become known as the synthetic dual-Doppler (SDD) technique.
- Has not been widely used on convective storms due to limitations of the technique.

Introduction

- The Super Tuesday outbreak of 5-6 Feb 2008, provided several cases where a SDD analysis might be successfully applied.
- Two cases with differing levels of success will be presented.
- Main Objective:
- Examine variability on storm structure in an outbreak this large.
- Thermodynamic retrievals were performed to determine the dominant updraft forcing mechanism.
- Secondary Objective:
- Explore viability on using the SDD technique on supercell thunderstorms.

Event Overview

Stuper Tuesdày Tornado Outbireal

L Little Rock 1

Februarys 5-6, 20 g 8

Springfield

Location of cases relative to the event.

RUC sounding centered on Nashville for 0700 UTC (Case 2).

Case 1 - KNQA

- Developed from a cluster of thunderstorms that initiated in NE Louisiana and SE Arkansas
- Produced an EF2 tornado as it moved into TN, just north of Southaven, MS
- Went on to produce a long track EF3 and the EF4 tornado that devastated Union University near Jackson, TN
- Best SDD analyses came between 2350 and 0020 UTC, when the mesocyclone passed KNQA at a distance of 25-38 km
- Storm motion was from 230° at $26 \mathrm{~ms}^{-1}$

Case 2-KOHX

Base reflectivity @ 0.9° from 0616 UTC to 0751 UTC

- Developed from a cluster of cells in north Mississippi
- Produced several EF0 tornadoes as it moved to the northeast, towards Nashville
- Best SDD analyses came between 0650 and 0716 UTC, when the mesocyclone passed KOHX at a distance of $16-25 \mathrm{~km}$
- Storm motion was from 242° at $24 \mathrm{~ms}^{-1}$

SDD Wind Retrieval

Geometry of the (synthetic) dual-Doppler technique

- Technique described in detail by Bluestein and Hazen (1989) and Klimowski and Marwitz (1992)
- Follows conventional dual-Doppler geometry (Lhermitte and Miller 1970) and uses the common dual-Doppler software, CEDRIC (Mohr et al. 1986)
- Requirements/Assumptions:
- Storm-motion must parallel radar site/synthetic baseline at a relatively close distance
- The storm must move quick enough so that it goes through at least 30° of radar azimuth
- Velocity fields can not change significantly between volume scans (quasi-steady-state assumption)
- Steadiness of supercells first estimated by visually comparing volume scans and further quantified by a correlation analysis of radar variables
- Main source of error is changes in velocity fields between volume scans
- Error can also be introduced through uncertainties in calculating the storm-motion vector, which is used to find the radar baseline through $c \Delta t$ where c is storm speed and Δt_{s} is time between volume scans (baseline $\sim 30 \mathrm{~km}$ for both cases)
- Visual comparison of case 1 showed a supercell slightly strengthening between volume scans. Correlation analysis yielded a correlation coefficient (r) of 0.4-0.7 below 5 km
- Case 2 - did not change significantly; r value of $0.7-0.9$ below 6 km

Thermodynamic Retrieval

- Method pioneered by Gal-Chen (1978) and modified by others (Hane et al. 1981; Pasken and Lin 1982; Brandes 1984; Hane and Ray 1985)
- Rearrange horizontal momentum equations to solve for pressure where "known" quantities F and G come from the horizontal wind field
- Resulting Poisson equation can only be solved using a least squares solution and is subject to Neumann boundary conditions

$R=\frac{1}{g} \frac{D w}{D t}+q_{c}+q_{r}$
- θ_{v}, q_{c}, q_{r} found using a sounding from each location
- Assumes ice free cloud, so presence of hail introduces error

Results - Case 1

SDD analyses, storm relative flow at 1.5 (left) and 4.0 (right) km

Vertical motion at 1.5 (left) and 4.0 (right) km. Warm colors > $0 \mathrm{~ms}^{-1}$; cool colors $<0 \mathrm{~ms}^{-1}$; contour interval 10 ms^{-1}

Peaks at $50 \mathrm{~ms}^{-1}$ at 4.0 km

Pressure perturbation at 1.5 (left) and 4.0 (right) km. Warm colors > 0 hPa; cool colors $<0 \mathrm{hPa}$; contour interval 0.5 hPa .

Attains local minima of -3.0 hPa at 4.0 km .

Buoyancy deviation at 1.5 (left) and 4.0 (right) km. Warm colors > 0°; cool colors $<0^{\circ}$; contour interval 1°.

Local maximum greater than 4° reached at 4.0 km .

Results - Case 2

SDD analyses, storm relative flow at 1.5 (left) and 3.0 (right) km

Vertical motion at 1.5 (left) and 3.0 (right) km. Warm colors > $0 \mathrm{~ms}^{-1}$; cool colors $<0 \mathrm{~ms}^{-1}$; contour interval 10 ms^{-1}

Peaks at $34.5 \mathrm{~ms}^{-1}$ at 3.0 km

Pressure perturbation at 1.5 (left) and 3.0 (right) km. Warm colors > 0 hPa; cool colors < 0 hPa ; contour interval 0.5 hPa

Attains local minima of -3.0 hPa at 3.0 km .

Buoyancy deviation at 1.5 (left) and 3.0 (right) km. Warm colors $>0^{\circ}$; cool colors $<0^{\circ}$; contour interval 1°

Local maximum near 2.5° reached at 3.0 km .

Case 1 vertical cross section taken at $x=19.5$ km

Strong updraft on southern storm flank, but erroneous flows in northern part of storm

Case 2 vertical cross section taken at $\mathrm{x}=-21$ km

Strong updraft on southern storm flank

Conclusions

- Given the visual comparison of volume scans, correlation analysis, and actual results from the SDD analyses, case 2 appears to contain less error.
- If a subjective quality score had to be given, case 2 would rank $4 / 5$ whereas case 1 would be $2 / 5$.
- SDD technique captured the mesocyclone of case 1 fairly well, however, due to the evolving nature of this supercell, errors are unavoidable.
- Case 2 demonstrates how well the SDD technique can work IF the requirements are met:
- quasi-steady-state
- move through at least 30° of radar azimuth
- propagate parallel to the radar site at a relatively close distance
- Often difficult for supercells to meet just one of these requirements - uniqueness of case 2.

Conclusions

- Consider case 1 reliable enough for comparison.
- Case 2 was smaller and not as strong (updraft of 34.5 $\mathrm{ms}^{-1} @ 3.0 \mathrm{~km}$ vs. $50 \mathrm{~ms}^{-1}$ at 4.0 km).
- Case 2 was in a high shear-low(er) cape environment compared to the first.
- Implications of such a low-level updraft maximum on low-level vorticity stretching.
- Buoyancy deviations of case 1 were greater (more than 4°), possibly leading to greater buoyancy forcing.
- Magnitude of pressure perturbations within the mesocyclones (-3.0 hPa) were similar, but different structures
- Environmental differences played a significant role in their development.

Future Work

- Examine other storms from a single Doppler viewpoint to put these in perspective.
- More SDD analyses.
- VAD analyses will be used to reveal changes in SRH during storm passage and details of outflow.
- More robust thermodynamic retrievals.
- Eventually, a high resolution numerical simulation will be used for further comparisons of SDD analyses and thermodynamic retrievals.

