ATS 541 HW M 3

Solutions

De Es pts. total

Total: 97 for undergrads
117 for grads

HNA Ch. 3 (Knupp's Notes, Ch. 4 Tsenis)

[]- (a) isothermal reversible compression
$$p \uparrow f$$
 $p \uparrow f$
 $p \uparrow f$

$$pV = nRT$$

$$V = \frac{nRT}{P}$$

$$dV = -nRT \frac{dP}{P^2} \left[+ \frac{nR}{P} dT \right]$$

$$W = \int_{R_i}^{R_f} -nRT \frac{dp}{p}$$

$$W = -nRT \ln \frac{Pf}{p_i} \quad \text{or} \quad W = nRT \ln \left(\frac{V_f}{V_i} \right)$$

$$\Delta u = \int du = \int_{\tau_c}^{\tau_f} c_{v} d\tau = 0$$
 Since $\tau = const$.

b) sudden compression to pr (from pr)

An example like this war given in the notes.

$$W = \int_{V_i}^{V_f} p dV = \int_{$$

$$M = b^{t} (\Lambda^{t} - \Lambda^{c})$$

Again,
$$\Delta u = 0$$
 since $T_f = T_i$

adiabatic reversible compression followed by

a reversible Bobanic cooling.

Need to consider 2 processes @ and 6.

Process @ is adiabatic

$$dq = 0 \rightarrow dw_a = -du$$

Process D is const. pressure, so dw = pdV

$$= -(u'-u_i) + \rho_f(v_f-v')$$

=
$$-nc_v(T'-T_i) + nR(T_f-T_i) \leftarrow pV = nRT$$

$$= nc(T-T') = \sum_{p=1}^{\infty} (nc_{p})^{2} - nRT$$

$$= -n c_p T \left(\frac{T'}{T} - I \right)$$

$$W = -n\epsilon_p T \left[\left(\frac{p_f}{p_c} \right)^{R/c_p} - 1 \right]$$

$$p = const$$
.

 $p = const$.

 $p = const$.

(primed values

are at inter-

mediate point)

$$= pV = nR1$$

note
$$p' = pf$$

$$E_p = C_U + R$$

$$\frac{T'}{T_i} = \left(\frac{p'}{p_i}\right)^{R_{Cp}} \quad \left(p_f = p'\right)$$

$$\Delta u = 0$$
 Since $T_f = T_i$

in the different

$$W_1 = 0$$
 Since $V' = V_1$
 $\Delta U = N C_V (T' - T_1)$

$$W_2 = \int_{V_i}^{V_f} \rho dV = -p_f \left[\frac{nRT_i}{p_i} - \frac{nRT_f}{p_f} \right]$$

$$W_2 = NRT \left(\frac{p_f}{p_i} - 1 \right)$$

$$W = W_1 + W_2 = nRT(\frac{PF}{PC} - 1)$$

$$\Delta u = 0$$

Ending!

1 pts: AU = 0

in all cases

 $T_{i'} = T_{f} = T$

4B pts. ea: Win each port.

 $\frac{12.1}{12.1}$ $p_1 = 1000 \text{ mb}$ $T_1 = 10^{\circ}\text{C}$ $\frac{dry}{dry}$ air $\frac{1}{12}$ $p_2 = 700 \text{ mb}$

This is an adiabatic procest, so dq = 0.

a)
$$\propto_{\mathbf{f}} = \frac{Rd T_{i}}{P_{i}} = \frac{(287 \text{ J kg}^{-1})(283.15 \text{ K})}{10^{5} Pa}$$

$$= 0.81 \text{ m}^{3} \text{ leg}^{-1}$$

b)
$$T_2 = T_1 \left(\frac{P_1}{P_{21}}\right)^{RdC_{Q}} = (283.15 \text{ K}) \left(\frac{700}{1000}\right)^{.286}$$

$$= \left(255.6 \text{ K}\right)$$

$$d_2 = \frac{R_d T_2}{P_2} = \frac{(287)(255.6)}{7 \times 10^4 R_0} = 1.05 \text{ m}^3 \text{ kg}^4$$

c)
$$\Delta u = c_V \Delta T$$

= $(717 \ J \ leg^{-1} \ K^{-1})(255.6 - 283.1) K$
= $[-1.97 \times 10^{4} \ J \ leg^{-1}]$
 $\Delta h = c_P \Delta T$
= $(1005 \ J \ leg^{-1} \ K^{-1})(255.6 - 283.1) K$
= $[-2.76 \times 10^{4} \ J \ leg^{-1}]$

d)
$$dw = pdx$$
 (adiabatic) $\Rightarrow dw = -du$

$$\Delta W = -\Delta u = -1.97 \times 10^{4} \text{ J kg}^{-1} \text{ from part (c)}$$
Find mass in $1 \text{ km}^{3} \text{ e} \frac{1000}{700} \text{ mb}$

$$m = \frac{V}{\alpha} = \frac{1 \text{ km}^{3}}{-61 \text{ m}^{3} \text{ kg}^{-1}} = \frac{(10^{3} \text{ m})^{3} \text{ l'km}^{3}}{0.31 \text{ m}^{3} \text{ kg}^{-1}} = 1.23 \times 10^{9} \text{ kg}^{-1}$$

$$^{\circ} W = m \Delta u = (1.23 \times 10^{9} \text{ kg})(-1.97 \times 10^{4} \text{ J kg}^{-1}) = [2.43 \times 10^{13} \text{ J}]$$

$$13. \left(10 p^{13} \right)$$

$$168 \quad h = u + p\alpha$$

$$=(c_V+R)dT (=f(T))$$

adiabatic compression
$$\Rightarrow T_2 = T_1 \left(\frac{\rho_2}{\rho_1}\right)^k$$

$$= 283.15 \left(\frac{100}{70}\right)^{R}$$

$$\int_{1}^{2} dh = \Delta h = \int_{T_{1}}^{T_{2}} c_{\rho} dT = c_{\rho} \Delta T$$

4. Cold case

De simple 251.67

De Bolton 257.90

Worm case

De simple 362.1

De Bolton 368.4

ISI Specific heat definition $6 = \frac{dq}{dt}$

For adiabetic, dq = 0 => c = 0For isothermal $dq \rightarrow \infty$ -> undefined $\lim_{\Delta T \rightarrow 0} \frac{dq}{dT} = \infty$

[6-] Cruising altitude ~ 10 km (35,000 ft)

a) Assume $T_{sfe} = 25^{\circ} c$ Spts. $\left(\frac{3T}{3Z}\right) = 6.5^{\circ} c/km$

 $= \int T_{10km} = T_{5fc} - \frac{\partial T}{\partial 2} \cdot 10 \, \text{km}$ $= 25^{\circ}c - \frac{10}{km} \cdot 6.5^{\circ}c / \frac{km}{km}$ $= 25 - 65 = -40^{\circ}c = 233 \, \text{k}$

b) Assume Poutside = 25 kPa

If this our is brought inside, via adiabatic compression, then $T_{in} = T_{out} \left(\frac{f_{in}}{f_{out}} \right)^{K}$ $= 233 \left(\frac{85}{25} \right)^{-296}$ = 330.6 K = 57.6 ° c

. Air must be cooled.

7. a) Heated are expands

8 pts.

From the eq. of state, px = RT, we see that, for fixed p, $d \propto T$, so d increases as T increases.

10 pts

b) When air expands, it cools.

In this case, p decreases in an adiabatic expansion:

 $dq = 0 = c_v dT + p dx$

CvdT = -pdx = -dw

For dx 70 (expanding air), dT <0 Hence the air cools. Tsonis 4.2: A sample of 100 g of dry air has initial T of 270 K and p = 900 mb. During an isobaric process heat is added and the volume expands by 20% of the initial volume. Estimate (a) final temperature, (b) heat added, and (c) work done against the environment.

4.2
$$M = 100 g$$
 $p = const$ $dry air$
 $T = 270 K$ $V_f = 1.2 V_i$
 $p = 900 \text{ mb}$ $\alpha_f = 1.2 \alpha_i$

$$dq = cvdT + pdd$$

$$da = mcvdT + pdV = mc_pdT - madp$$
 $m(q-cv)dT = pdV$
 $mRdT = pdV$
 $mRdT = pdV$
 $mRdT = pdV$
 $v = mRT_i$
 $v = \frac{1550 J}{(0.1 kg)(287 J kg^3 K^3)}$
 $v = 0.0861 m^5$
 $v = (76,000 Ra)(.1033-0.038)m^3$
 $v = (550 J)$

(b)
$$\Delta Q = MC_{1}\Delta T + W$$

= $(0.1 \text{ kg})(717 \text{ J/g}^{-1}K^{-1})(54 \text{ K}) + 1550 \text{ J}$
= $3872 \text{ J} + 1550 \text{ J} = 5422 \text{ J}$

Tsonis 4.5: Assume that you are on the top of a mountain at an altitude of 15,000 ft and there are no clouds above or below. If the T = -12 C, what will the temperture be at 3500 ft altitude?

4.5	15,000 ft T3500 T3500
	73300 2000 41
	Asseme dry air, so Si = -9.8°C/km
	Difference in altitude $\Delta h = (15,000 - 3500)ff$ $= 11,500 ff * (0.3048)ff$ $= 11,500 ff * (0.3048)ff$
	= 3,505 km
	$T_{3500} = T_{top} + T_d(\Delta h)$
	= -12° C + (-9.8° 4) (-3.505 km)
	= -12°C + 34.35°C
	= [22.35°c]
$w_{ij}(s) = 0 \\ \forall s \in S_i \\ \text{ in } s \in S_i \\ $	
· · · · · · · · · · · · · · · · · · ·	
tamelanda aku ini unu di dala mendhilikki odak da da karambanan dalaman da	
annan kana ari kana ara ari peri rasana nonoro ari manena kena kena ari nahar ari mahar ari mahar ari mahar ar	

Tsonis 4.7: A sample of dry air has a T = 300 K, a volume = 3 liters, and p = 4 atm. The air undergoes the following changes: (a) warmed at const p to 500 K, (b) cooled at const V to 250 K, (c) cooled at const p to 150 K, and (d) warmed at const V to 300 K. (1) Describe graphically on a (p,V) diagram each of these changes, (2) calculate the total work done.

a) wormed at p = corof to 500 K 4,7 dry air T= 300 K 1) cooled @ V = const to 250 K c) cooled @ p=const to 150 K V = 31 p = 4 atm 300 K 500 K initial (): p = 4 atm, V = 31, T = 300 K 0 + 4 atm 0 = 2: $V = \frac{MRT}{P} = \frac{(1.41 \times 10^{-4} \text{kg})(287)(50c)}{4 \times 1013.25}$ = 4.99 & = 51 (dQ = GdT + pdV pV = mRT) 3-4) Vat V=(150) 5l = 3l W = p/dV + p/dV4 atm (5-32) + 2 atm (3-52) +8 l·atm - 4 l:atm 4 l. atm = 4 * 1013,25 * 100 * 10-3 m3 1.1 = 405.3 5

Petty 5.7
$$\theta = 310 \text{ K}$$
 Find $T \in 700, 300, 100 \text{ hpa}$

$$\theta = T \left(\frac{P_0}{P}\right)^{R_0/4} \Rightarrow T = \theta \left(\frac{P_0}{P}\right)^{-R_0/4}$$

a)
$$T = 310 \left(\frac{1000}{700}\right)^{-0.286} = 279.9 \text{ K}$$

b) $T = 310 \left(\frac{1000}{300}\right)^{-0.286} = 219.7 \text{ K}$
c) $T = 310 \left(\frac{1000}{700}\right)^{-0.286} = 160.5 \text{ K}$

b)
$$T = 310 \left(\frac{1000}{300}\right)^{-5.280} = 219.7 \text{ K}$$

c)
$$T = 310 \left(\frac{1000}{100}\right)^{-0.286} = 160.5 K$$

Petty 5.10
$$\Delta Z = 10 \text{ m}$$
 $\Delta T = -5 / 10 \text{ hr}$.

 $\rho = 1.25 \text{ kg m}^{-3}$

$$dq = c_p dT - \omega dp$$
 Find m:

$$m = \rho \Delta Z$$

$$= 12.5 \log m^{-2}$$

mass per unit

$$\dot{Q} = \frac{dQ}{dt} = mc_p \frac{dT}{dt} = 12$$

$$\dot{Q} = (12.5 \text{ kg m}^{-2})(1005.7) \frac{-5 \text{ k}}{10 \text{ k} \cdot 36005 \text{ hz}^{-1}}$$

$$= -1.75 = 5 \text{ m}^{-2} \text{ s}^{-1}$$

$$= -1.75 \text{ W m}^{-2}$$

Petty 5.4

20 pts

Compute i) mechanical work and

ii) heat added for the following

a) isothermal compression, T=15°C, to \$ orig-volume

i)
$$W = \int p dx$$
 $p\alpha = RT$ $\alpha = \frac{RT}{P} \Rightarrow p = \frac{RT}{\alpha}$

$$= RT \int d \ln \alpha = RT \ln (0.2)$$

= (287)(288)(-1.609) $[W = -1.33 \times 10^{5} \text{ J/sg}^{-1}]$

(ii)
$$dq = c_V dT + p d\alpha \implies dq = dw$$

$$\Delta q = \omega$$

 $\Delta q = \omega$ = $\left[-1.33 \times 10^{5} \text{ J kg}^{-1} \right]$

b) is baric heating from 0 to 20°C

$$dg = GdT - cdp$$

ii) $\Delta g = GdT = 1005.7(20) = [2.01 \times 10^4 5 \text{ kg}^{-1}]$

(i)
$$dq = c_V dT + dw$$

 $w = \int dq - f_V dT = Aq - c_V \Delta T$
 $= 2.01 \times 10^4 - (717)(20)$
 $= 5740 \quad 5 \quad kg^{-1}$

$$c_{v}dT = -pda$$
 $px = RT$ $p = RT$

$$\int_{I}^{I_{i}} dT = -\frac{R}{c_{v}} \int_{\alpha_{i}}^{S\alpha_{i}} dx$$

$$T_f = T_i \exp\left(-\frac{R}{c_V} \ln 5\right)$$

$$=293 \exp\left(\frac{287}{717}, 1.609\right) = 153.9 K$$

i)
$$\int dw = \omega = -c_V \int_{T_i}^{T_i} = -c_V (153.9 - 293.15)$$

= 9.9 × 104 J kg⁻¹