Exam 1 (Chaps. 1-6 of the notes)

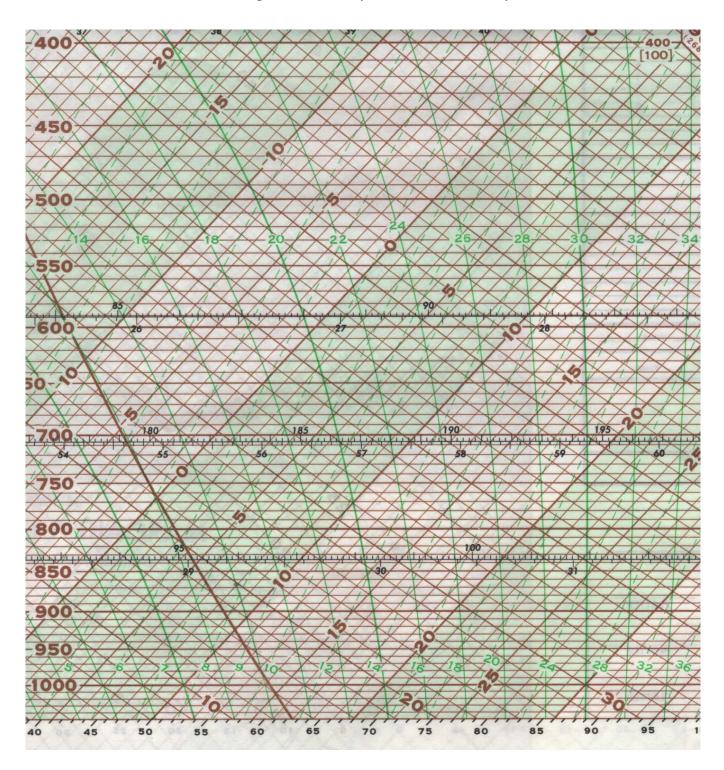
- ATS 541 students: Answer all questions
- ATS 441 students: You may delete problem 3 or problem 5
- 1. [10 pts]
- a) Check the following quantities that are conserved when <u>unsaturated</u> air experiences an adiabatic expansion (e.g., by vertical lifting with no mixing)?
 - _____ dewpoint temperature (T_d)
 - _____ enthalpy (h)
 - _____ entropy (s)
 - _____ equivalent potential temperature (θ_e)
 - ____ mixing ratio (r_v)
 - _____ potential temperature (θ)
 - _____ relative humidity (f)
 - _____ water vapor pressure (e)
 - _____ wet-bulb potential temperature (θ_w)
 - _____ wet-bulb temperature (T_w)
- a) Check the following quantities that are conserved when <u>saturated</u> air is lifted adiabatically (no mixing, and all condensed water stays with the parcel)?
 - _____ dewpoint temperature (T_d)
 - _____ enthalpy (h)
 - _____ entropy (s)
 - _____ equivalent potential temperature (θ_e)
 - _____ mixing ratio (r_v)
 - _____ potential temperature (θ)
 - _____ relative humidity (f)
 - _____ water vapor pressure (e)
 - _____ wet-bulb potential temperature (adiabatic, θ_w)
 - _____ wet-bulb temperature (T_w)

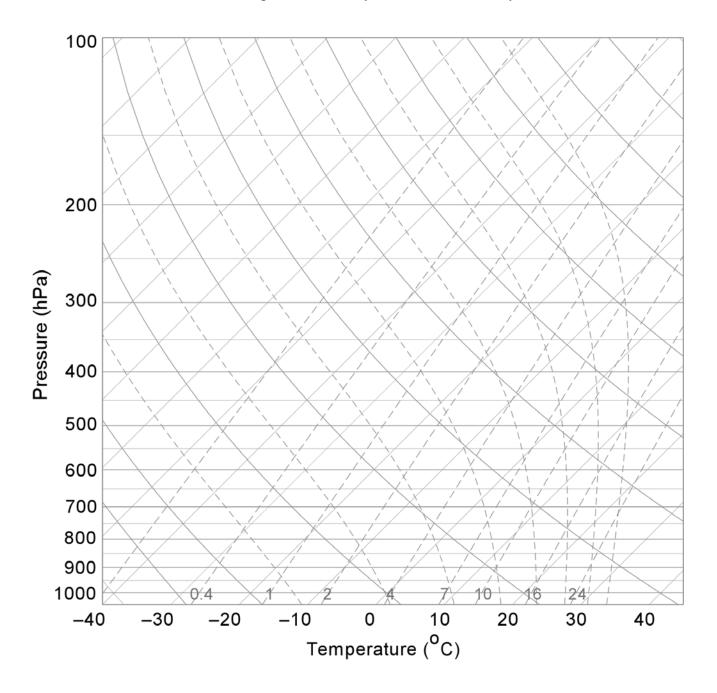
2. [30 pts]

Consider a parcel with the following thermodynamic values:

$$p = 900 \text{ hPa}$$

 $T = 25 \text{ °C}$
 $r_v = 10 \text{ g kg}^{-1}$


Using the skew-T diagram on the following pages, find the following parameters graphically. Also write the equation that would be used to determine the *most precise* values.


a) saturation point T and p values (T_{sp} and p_{sp} ; give equation for T_{sp} only)

b) saturation mixing ratio

- c) potential temperature
- d) equivalent potential temperature
- f) wet-bulb potential temperature
- g) dew-point temperature
- h) relative humidity
- i) vapor pressure
- j) the temperature of a parcel that ascends adiabatically to 600 mb
- k) the adiabatic mixing ratio of the parcel at 600 mb

Show all work on the skew-T diagrams on the next two pages.

10/12/06

4. [10 pts]

A parcel of moist air has a total pressure of 975 hPa and a temperature of 15 °C. If the mixing ratio is 1.8 g kg^{-1} , what are the water vapor pressure and the virtual temperature?

10/12/06

5. [15 pts]

An isolated rain drop that is evaporating into air with a temperature of 18 °C has a water surface temperature of 12 °C.

a) Find (using a skew-T) the mixing ratio of the air.

b) Indicate what equation you would use to solve this problem precisely.

6. [20 pts]

- a) Convert the First Law of Thermodynamics from the T, α form (dq = c_vdT + pd α) to the T, p form. Show all steps.
- b) Derive potential temperature (θ) from this form (dq = c_pdT α dp) of the First Law
- c) Explain why a correction factor in the exponent is used when water vapor is present.

Equations and constants

 $p = \rho_m R_d T_v.$ $e = \rho_v R_v T$ $p\alpha = (R^*/M)T = RT$ $dq = c_p dT - \alpha dp.$ $dq = Tds = du + pd\alpha.$ $dq = c_v dT + p d\alpha$. $(T_{v}^{c}\alpha_{d}^{R} = const)$ $(T_{p}^{c}p_{d}^{-R} = const$ $(p_{c}^{c}\alpha_{d}^{c} = const)$ $T\alpha^{\eta-1} = const$ $(T^{c}{}_{p}p^{-R}{}_{d} = const) \qquad \qquad \kappa = R_{d}/c_{p} \text{ and } \eta = c_{p}/c_{v}.$ $Tp^{-\kappa} = const$ $(p^{c}_{v}\alpha^{c}_{p} = const)$ $p\alpha^{\eta} = const$ $c_{pm} = c_{pd}(1 + 0.887 r_v) \qquad R_m = R_d(1 + 0.608 r_v).$ $\theta_{e} = \theta \exp\left(\frac{L_{vl}r_{vs}}{c_{p}T_{sp}}\right) \qquad \qquad \theta_{e} = \theta \exp\left(\frac{2675r_{vs}}{T_{sp}}\right)$ $ds = \frac{dq_{rev}}{T} \qquad \qquad \theta = T\left(\frac{p_0}{p}\right)^{\frac{R_d}{c_p}(1-0.28r_v)}$ $f \equiv u - Ts$ $g = u - Ts + p\alpha$ $dp/dT = \Delta s/\Delta\alpha = -\Delta H_{fusion}/(T\Delta\alpha) \qquad \qquad dlne_s/dT = L_{vl}/(R_vT^2)$ $e_{s}(T) = Ae^{-B/T}$ $A = 2.53 \times 10^8 \text{ kPa}, B = 5.42 \times 10^3 \text{ K}$ $r_v = m_v/m_d = \epsilon e / [p-(1-e)e] \cong \epsilon e / p$ $q_v = \epsilon e / [p-(1-e)e]$ $\epsilon = 0.622$ $f = r_v / r_{vs}(T,p) = r_{vs}(T_d,p) / r_{vs}(T,p) \approx e/e_s(T)$ R

$$T_v \cong T(1+0.61r_v)$$
 $T_d = T_d(r_{vs},p) = \frac{B}{\ln\left(\frac{A\varepsilon}{r_v p}\right)} = f(r_v,p)$

$$T_{iw} = T - (L_{lv}/c_p)[(\epsilon/p)Ae^{-B/T_w} - r_v], \qquad T_{ie} = T + L_{lv}r_v/c_p.$$

$$T_{sp} = \frac{2840}{3.5\ln T - \ln e - 4.805} + 55.$$

 $\chi = \rho_m \left[r_{vs}(T_{sp},p_{sp}) - r_{vs}(T_{sat},p)_{\theta_{e=const}} \right]$

$$\theta_e = T_K \left(\frac{1000}{p}\right)^{0.2854(1-0.28r_v)} \exp\left[\left(\frac{3.376}{T_{sp}} - 0.00254\right) r_v \left(1 + 0.81r_v\right)\right]$$

$$\begin{split} c_V &= 717 \text{ J } \text{K}^{-1} \text{ kg}^{-1} \\ c_p &= 1005.7 \text{ J } \text{K}^{-1} \text{ kg}^{-1} \\ c_{wv} &= 1463 \text{ J } \text{K}^{-1} \text{ kg}^{-1} \\ c_{wp} &= 1952 \text{ J } \text{K}^{-1} \text{ kg}^{-1} \\ R_d &= 287 \text{ J } \text{ kg}^{-1} \text{ K}^{-1} \quad R_v = 461.5 \text{ J } \text{ kg}^{-1} \text{ K}^{-1} \\ L_{vl} &= 2.50 \text{ x } 10^6 \text{ J } \text{ kg}^{-1} \quad (0 \ ^{\circ}\text{C}) \quad \text{ latent heat of condensation (function of T)} \\ L_{vl} &= 2.25 \text{ x } 10^6 \text{ J } \text{ kg}^{-1} \quad (100 \ ^{\circ}\text{C}) \\ L_{il} &= 3.34 \text{ x } 10^5 \text{ J } \text{ kg}^{-1} \quad \text{ latent heat of melting} \\ L_{vi} &= 2.83 \text{ x } 10^6 \text{ J } \text{ kg}^{-1} \quad (0 \ ^{\circ}\text{C}) \quad \text{ latent heat of deposition} \\ L_{vl} &= (2.501 - aT_c) \text{ x } 10^6 \text{ J } \text{ kg}^{-1}, \quad \text{where a} = 0.00237 \ ^{\circ}\text{C}^{-1} \text{ and } T_c \text{ is the dry bulb temperature in }^{\circ}\text{C}. \end{split}$$

Table 5.1. Saturation vapor pressures over water and ice, and latent heats of condensation and deposition.

T (°C)	e _s (Pa)	e _i (Pa)	$L_{v1} (J kg^{-1}) x 10^{6}$	$L_{vi}(J \text{ kg}^{-1}) \ge 10^6$
-40	19.05	12.85	2.603	2.839
-35	31.54	22.36		
-30	51.06	38.02	2.575	2.839
-25	80.90	63.30		
-20	125.63	103.28	2.549	2.838
-15	191.44	165.32		
-10	286.57	259.92	2.525	2.837
-5	421.84	401.78		
0	611.21	611.15	2.501	2.834
5	872.47		2.489	
10	1227.94		2.477	
15	1705.32		2.466	
20	2338.54		2.453	
25	3168.74		2.442	
30	4245.20		2.430	
35	5626.45		2.418	
40	7381.27		2.406	