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Chap. 3

First Law of Thermodynamics
General Form

Atmospheric Science Applications

Some general statements 

• The energy of the universe is constant 
• The First Law:

– defines internal energy
– states that heat is a form of energy.
– states that energy is conserved

• The First Law is the second fundamental 
principle in (atmospheric) thermodynamics, 
and is used extensively.
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Work of expansion

• Work is part of the First Law, but it can be 
considered independently

• What is work?
– If a system (parcel) is not in mechanical 

(pressure) equilibrium with its surroundings, it will 
expand or contract.  This involves “work”.

• Work is defined by the differential dw ≡ f⋅ds

• dW = pAdx = pdV
(shaded region of the 
graph)

• Specific work (work per 
unit mass): 

dw = pdα
• work is found by 

integrating this differential 
over the initial and final 
volumes V1 and V2:
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This thermodynamic diagram (p-V) 
represents the state of the system at every 
point along the line.   (Recall that the p-V 
diagram is a simple thermodynamic 
diagram.)

W ∝ area under the curve AB

Illustration:
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Example 3.1 
Calculate the work done in compressing (isothermally) 2 kg 
of dry air to one-tenth its initial volume at 15 ºC.

From the definition of work, W =  ∫ pdV.

From the equation of state, p = ρdRdT = (m/V)RdT.

Then W = mRdT ∫ dlnV = mRdTln(V2/V1)  
(remember the process is isothermal)

= (287 J K-1 kg-1)(288.15 K)(2 kg)(ln 0.1)
= -3.81 x 105 J.

The negative sign signifies that work is done on the volume 
(parcel) by the surroundings.

Work, cont.
• The quantity of work done depends on the path taken; work 

is not an exact differential.  If it was, work would depend only
on the beginning and end points (or initial and final 
conditions.  

• Reconsider Eq. (3.a) above, rewriting it as follows (noting 
that the displacement dx = vdt, where v is the magnitude of 
the velocity vector):

• dW = pA(dx) = pA(vdt)
• Since p = F/A (or F = pA), the above equation becomes
• dW = Fvdt or dW/dt = Fv
• Now from Newton’s Law, F = ma = mdv/dt.  Substituting this 

in the above yields
• or dW/dt = dK/dt (K = ½ mv2)
• Hmmmm, we just can’t escape dynamics!
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Example 3.2 (from problem 3.7 in 
Tsonis):  An ideal gas of p,V,T
undergoes the following successive 
changes: (a) It is warmed under 
constant pressure until its volume 
doubles. (b) It is warmed under constant 
volume until its pressure doubles. (c) It 
expands isothermally until its pressure 
returns to its original pressure p.  
Calculate in each case the values of p, 
V, T, and plot the three processes on a 
(p,V) diagram.

The three processes are shown in the 
graph on the right.  In the first process, 
the work is

In the second process, the work is zero since volume does not change.  

In the third process, the value of work is similar to that done in Example 3.1.  As 
this process proceeds through steps a-c, the temperature increases such that 
Tb>Ta>T.

More on thermodynamic work

http://en.wikipedia.org/wiki/Work_%28thermodynamics%29
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Internal energy and a mathematical 
statement of the First Law 

1. Consider a system which undergoes a change from some 
heat input q per unit mass (q=Q/m).

2. The system responds through the work of expansion, w
(work per unit mass).  

3. The excess energy beyond the work done by the system is 
q-w .  

4. If there is no change in macroscopic or bulk kinetic and 
potential energy of the system, then it follows from 
conservation of energy that the internal energy (∆u - per 
unit mass) of the system must increase according to:

q - w = ∆u (simple expression of the First Law) (3.2)

General form of the First Law in terms of various energy terms:

We will sum the various forms of energy which have passed through the system-

surroundings boundary and set this new sum equal to the change in the system 
internal energy, similar to what we did in the previous equation.  This expression 
differentiates thermal (LHS) and non-thermal (RHS) forms of energy:

∆u = q + Σei,    (a more general form of the First Law)

where q is again the net thermal energy (per unit mass) passing into the system 
from the surroundings.  [Thermal energy can be defined as the potential and kinetic 
energies that change as a consequence of a temperature change.] 

Note that this last expression deals with the classification of energy passing through 
the system boundary -- it does not deal with a classification of energy within the 
system. 

http://en.wikipedia.org/wiki/First_law_of_thermodynamics
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What is thermal energy (q)?

• At this point, it is instructive to define 
thermal energy.  

• In the atmosphere, thermal energy can 
include heating/cooling by 
– Radiation (heating by absorption of SW or 

LW; cooling by emission of LW)
– latent heating (associated with water phase 

changes).

Joule's Law:  u depends only on T          OK, prove it!

From statistical mechanics, for an ideal monatomic gas, the kinetic 
energy of translations is given by (refer to Chap 2 of Knupp’s notes)

pV = (1/3)Nomu2 = (2/3)Ekin = RT,

where N0 is Avogadro's number (6.023x1023).   Thus, 

Ekin = (3/2)RT.

Since at constant temperature there are no energy changes in 
electronic energy, rotational energy, etc., the internal energy of an 
ideal gas is only a function of T.  This is also true for polyatomic ideal 
gases such as CO2 (and more generally for air).

u = f(T)    (Is this a proof?)
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A general form of the First Law (in the differential form)

Dq = du + Dw = du + pDα.  (3.4)

[What has happened to the Σei  term?]

The operator "d" refers to an exact differential and "D" to inexact.  One property 
of the inexact differential (e.g., Dw) is that the closed integral is in general 
nonzero, i.e., 

[see http://en.wikipedia.org/wiki/Inexact_differentials]

The first law requires that du be an exact differential -- one whose value 
depends only on the initial and final states, and not on the specific path.  
However, from here on, we will ignore (but not forget) this formal 
distinction between exact and inexact differentials.

Aside: An exact differential can also be expressed as, for a function U = U(x,y) 
(Tsonis, Section 2.1)

Dw ≠∫ 0.
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Illustrate with p-V diagram

Review and applications

Applications of the equation of state, and connection with the First Law.  
From http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/idgcon.html#c1
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Review and example problems

Review the information and example problems at the following web site:

http://sol.sci.uop.edu/~jfalward/thermodynamics/thermodynamics.html

3.4 Specific heats

Consider the case where an incremental amount of heat dq is 
added to a system.    

The temperature of the system increases by an incremental 
amount dT (assuming that a change of phase does not 
occur).

The ratio dq/dT (or Dq/DT) is defined as the specific heat, 
whose value is dependent on how the system changes as 
heat is input.  

c = dq/dT     [note that C = mc = m(dq/dT)]
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Two atmospheric scenarios:  constant volume and 
constant pressure.

For constant volume:   cv ≡ (dq/dT)α=const

Since specific volume is constant, no work is done.  
According to the First Law, Eq. (3.1), dq = du (since dα = 
0) and

cv = (du/dT)α=const (3.5)

Then du=cvdT

and dq = c vdT + pd αααα.  (3.6)*

For the isobaric process, the specific heat is 

cp ≡ (dq/dT)p=const (3.7)

In this case, some of the heat added is used in the work of 
expansion as the system expands against the constant 
external pressure of the environment.  The value of cp must 
therefore be greater than that of cv.  

To show this, we can write (3.6) as

dq =  cvdT + d(pα) - αdp = d(u+pα) - αdp = dh - αdp,

where h, the enthapy is defined as h ≡ u + pα. 

(Enthalpy is discussed further in the following section.)
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Since pα = RT from the equation of state (for dry air), the 
previous equation can be rewritten as

dq = (c v+R)dT - ααααdp = c pdT - ααααdp. (3.8)*

If pressure is constant then dp=0 and, using (3.6), we note 
that cp exceeds cv by the amout R, the gas constant:

cp = cv + R.                   (3.9)*

For dry air, the values are:

cv = 717 J K-1 kg-1

cp = 1005.7 J K-1 kg-1 [ = f(T,p); Bolton, 1980]

For ideal monatomic and diatomic (air) gases, it can be shown from statistical 
mechanics theory that the ratios cp:cv:R are 5:3:2 and 7:5:2, respectively.  (See 
Tsonis, p. 32.)   The variation of cp with T and p is presented in Table 3.1.

Table 3.1.  Dependence of cpd (J K-1 kg-1) on T and p.  From Iribarne and Godson 
(1973).

1007.41006.11006.51009.01000

1006.51005.31005.31006.5700

1006.11004.41004.01004.4300

1005.71004.01003.71003.30

400-40-80

T (°C)p (mb)

Why is cp not constant? 
Relative variation: (1007.4 – 1004.0) / 1007.4

= 3.4/1007.4 = 0.0034
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3.5  Enthalpy

Many idealized and natural processes of interest in 
atmospheric science occur at constant pressure.  An 
example is evaporation of rain.  If heat is added isobarically 
to a system such that both the internal energy u and 
specific volume α change, then the First Law (dq = du + 
pdα)  can be integrated as

∆q = (u2-u1) + p(α2 - α1) = (u2+pα2) - (u1+pα1) 

=       h2 - h1,

where enthalpy h is defined as

h = u + pα.                                (3.10)

Upon differentiation, we obtain

dh = du + pdα + αdp   [= dq + αdp]

∴ dq = dh - αdp.

Comparing this with (3.8) we can redefine dh as

dh = cpdT. (3.11)

This can be integrated to give (assuming h=0 when T=0 K)

h = cpT.

Yet another form of the First Law is thus

dq = dh - ααααdp = c pdT - ααααdp . (3.12)*

Three useful forms of the first law: (3.6), (3.8) and (3.12).
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3.6  Example: an isothermal process and reversibility

Consider a fixed mass (m=const) of ideal gas confined in a cylinder with a 
movable piston of variable weight.  The piston weight and its cross-sectional area 
determine the internal pressure.  Assume that the entire assembly is maintained at 
T=const (an isothermal process).  Let the initial pressure be 10 atm and the initial 
volume Vi be 1 liter (L).  

Consider three different processes in going from A to B (below right)

Process 1:  The weight of the piston is reduced to change the cylinder pressure to 1 
atm.  The gas will expand until its pressure is 1 atm, and since pV=mRT=const, the 
final volume Vf will be 10 L (see Fig. 3.1).  The work of expansion is 

W =  ∫pdV = psurr(Vf-Vi) = 1 atm * (10-1) L  = 9 L-atm.  

This is the work done on the surroundings.

Process 2:  This will be a two-stage process:  (i) Decrease (instantaneously) the 
cylinder pressure to 2.5 atm; then the volume will be 4 L, since this is similar to 
Process 1.  (ii) Then further decrease the pressure (instantaneously)  to 1 atm with a 
volume of 10 L.  The work is the sum of these two processes:

W = p1∆V1 + p2∆V2 = 2.5 atm * 3 L  + 1 atm * 6 L  = 13.5 L–atm

Process 3:  The pressure is continuously reduced such that the pressure of the gas is 
infinitesimally greater than that exerted by the piston at every instant during the 
process (otherwise no expansion would occur).  Then we must apply the integral form 
of work to get

W =   ∫pdV = mRTln(V2/V1)  = 23.03 L-atm.

Note that pV=mRT=10 L-atm = const in this example.
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This last process is reversible and represents the maximum work.  

Definition: A reversible process is one in which the initial 
conditions can be reproduced after a system goes th rough 
at least one change in state.

In process 3 above, the initial state of the system can be realized by 
increasing the pressure continuously until the initial volume is attained.  

Note that the value of work for the 
reversible process depends only on 
the initial and final states, not on the 
path.  

For the most part, idealized 
atmospheric processes are reversible 
since parcel pressure is assumed to 
be equal to (i.e., differs infinitesimally 
from) the ambient pressure.

Wikipedia definition of reversibility
• In thermodynamics, a reversible process , or reversible 

cycle if the process is cyclic, is a process that can be 
"reversed" by means of infinitesimal changes in some 
property of the system without loss or dissipation of energy. 
Due to these infinitesimal changes, the system is at rest
during the whole process. Since it would take an infinite 
amount of time for the process to finish, perfectly reversible 
processes are impossible. However, if the system 
undergoing the changes responds much faster than the 
applied change, the deviation from reversibility may be 
negligible. In a reversible cycle, the system and its 
surroundings will be exactly the same after each cycle.[2]

• An alternative definition of a reversible process is a process 
that, after it has taken place, can be reversed and causes no 
change in either the system or its surroundings. In 
thermodynamic terms, a process "taking place" would refer 
to its transition from its initial state to its final state.

http://en.wikipedia.org/wiki/Reversible_process_%28thermodynamics%29



14

3.7  Poisson’s Equations
An adiabatic process is defined as one in which dq=0 . The two advanced 

forms of the 1st Law (which are related by the equation of state) become

0 = dq = cvdT + pdα
0 = dq = cpdT - αdp

Using the equation of state in the form pα=RdT (dry atmosphere), the above relations 
can be manipulated to get the following differential equations:

0 = cvlnT + Rddlnα, [T, α]
0 = cpdlnT + Rddlnp, [T, p] (let’s look at this one)
0 = cvdlnp + cpdlnα, [p, α]

where the third expression was obtained using the equation of state.  Integration yields 
three forms of the so-called Poisson’s Equations :

Tαη-1 = const (TcvαRd = const)
Tp-κ = const (Tcpp-Rd = const
pαη = const (pcvαcp = const)

κ = Rd/cp = 0.286 and η = cp/cv = 1.403

The last of the three above equations (pαη = const ) has a form similar to 
that of the equation of state for an isothermal atmosphere (in which case 
the exponent is 1).  These relationships can be expressed in the more 
general form 

pαn= const,

which are known as polytropic relations.  

The exponent n can assume one of four values:

For n= 0, p = const isobaric process
For n = 1, pα = const isothermal process
For n = η, pαη = const adiabatic process
For n = ∞ isochoric process 

Refer to Tsonis, pp. 34-36.
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3.8 Potential temperature and the adiabatic lapse ra te

Potential temperature θ is defined as the temperature which an air parcel 
attains upon rising (expansion) or sinking (compression) adiabatically to a 
standard reference level of p0 = 100 kPa (1000 mb).

We use the (T,p) form of the First Law (3.5) , assuming an adiabatic process  (dq=0)

dq = 0 = cpdT - αdp.

Incorporate the equation of state, pα=RdT, to eliminate α, and rearrange to get

Now integrate over the limits, in which a parcel has a temperature T at pressure p, 
and then end with a (potential) temperature q at the reference pressure p0.  
Although not strictly correct, we assume the cp and Rd are constant.
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p
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.
Take the antilog of both sides and rearrange to isolate potential 
temperature (θ):

(3.13a)

[This is also called Poisson's equation, since it a form of Poisson’s 
equations, e.g., Tp−κ = const]  For dry air, κ = Rd/cp = 287/1005.7 = 
0.286  [= 2/7 for a diatomic gas – from kinetic theory]. This value 
changes somewhat for moist air because both cp and R (Rd) are 
affected by water vapor (more so than by T,p), as we shall see in the 
Bolton (1980) paper.  
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Potential temperature has the property of being conserved for 
unsaturated conditions (i.e., no condensation or evaporation), 
assuming that the process is adiabatic (i.e., no mixing or 
radiational heating/cooling of the parcel).

For a moist atmosphere, the exponent κ in Eq. (3.13a) is 
multiplied by a correction factor involving the water vapor 
mixing ratio rv, and q is expressed as (see Bolton 1980, eq. 7)

(3.13b)*

where rv is the water vapor mixing ratio expressed in kg kg-1.  

)28.01(

0
vr

p

p
T

−









=

κ

θ

Dry Adiabatic Lapse Rate

An associated quantity, the dry adiabatic lapse rate, which is 
used to evaluate static stability.  

The term "lapse rate" refers to a rate of temperature change with 
height (or vertical temperature gradient), i.e., ∂T/∂z.

[Aside: It is important to differentiate the static stability of the 
atmosphere, as given the the vertical gradient of temperature, 
∂T/∂z, from the Lagrangian temperature change that results 
when a parcel moves adiabically in the vertical direction.  The 
parcel change of temperature would be dT/dt = (dT/dz)(dz/dt) = 
w(dT/dz).]
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Our starting point is once again the First Law (3.5) with dq = 0 
(adiabatic process).

dq = cpdT - αdp = 0.

For a hydrostatic atmosphere (hydrostatic implies no vertical 
acceleration, and will be defined more fully later) the vertical
pressure gradient is

dp/dz = ∂p/∂z = -ρg = -g/α (hydrostatic equation)

Solving the above for α and substituting into the First Law, we 
obtain

cpdT + gdz = 0.

Thus, the value of the dry adiabatic lapse rate (Γd) is

(dT/dz)d = -g/cp =  Γd = -9.81 m s-2 /1005.7 J K-1 kg-1 [J = kg m2 s-2]
= -9.75 K km-1. (3.14)

Again, one should be aware that this value changes slightly for a moist 
(subscript m)  atmosphere (one with water vapor), since the addition of water 
vapor effectively yields a modified value of the specific heat at const 
pressure, which has the following dependence on water vapor:

cpm = cpd(1+0.887rv),

where rv is in units of kg kg-1 (Bolton, 1980).  (We will see this difference in 
graphical form later.)

Specifically, for moist air,

Γm = Γd / (1 + 0.887rv) ≈ Γd (1-0.887rv).
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Some uses of θ

• Atmospheric structure; conserved for 
subsaturated motion; atmospheric bores

• Vertical cross sections
• Analysis of static stability

3.9  Heat capacities of moist air; effects on const ants

The exponent of Poisson's equation (κ = Rd/cp) requires adjustment when water 
vapor is present.  Why?

The water vapor molecule (H2O) is a triatomic and nonlinear molecule, whose 
position can be described by 3 translational and 3 rotational coordinates.  
Dry air is very closely approximated as a diatomic molecule (N2, O2)
(See web site http://sol.sci.uop.edu/~jfalward/thermodynamics/thermodynamics.html.)  
The specific heats for water vapor are therefore quite different from (much 
larger than) that of dry air:

cwv = 1463 J K-1 kg-1 (w subscript designates the water phase)
cwp = 1952 J K-1 kg-1,

For Poisson's eq. (3.10a) the exponent Rd/cp is adjusted using the correction 
term (Rd/cp)(1-0.28rv) (Bolton 1980), where the water vapor mixing ratio rv is 
expressed in kg kg-1.  Also the "constants" Rd and cp can be corrected for moist 
air as follows:

cpm = cpd(1+0.887rv),
cvm = cvd(1+0.97rv),
Rm = Rd(1+0.608rv).
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3.10 Diabatic processes, Latent Heats and Kirchoff's  equation

diabatic process → dq ≠ 0. 

Two examples of diabatic heating/cooling
1. absorption/emission of radiation; 
2. heating/cooling associated with water phase changes

In the moist atmosphere, there are cases where heat supplied to a parcel without a 
corresponding change in temperature.  

Under such conditions, the water substance is changing phase, and the change in 
internal energy is associated with a change in the molecular configuration of the 
water molecule, i.e., a change of phase.     (latent heating)

Liquid
WaterIce Water

vapor

Heat gain

Heat loss

Deposition

Sublimation

Condensation

Evaporation

Freezing

Melting

Lil Lvl

L iv

Notation on the latent heating terms:  the two subscripts define the change in phase of 
the water substance.  

Lvl is the latent of condensation with the subscript vl denoting a change in phase from 
vapor (v) to liquid (l).  Thus, condensation is implied from the order of subscripts:  
vapor to liquid.   

For the sake of simplicity we can define the latent heats as follows:

Lvl = 2.50 x 106 J kg-1 (0 °C) latent heat of condensation (function of T)
Lvl = 2.25 x 106 J kg-1 (100 °C) (yes, Lvl does vary by 10% between 0-100 °C)
Lil = 0.334 x 106 J kg-1 latent heat of melting
Lvi = 2.83 x 106 J kg-1 (0 °C) latent heat of deposition

Note:  Lvi = Lvl + Lil

In general, these terms are defined for p=const . . .

but L vl does vary with temperature!
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Why is L a function of temperature?

From the First Law:  L is related to an enthalpy change, i.e., L = ∆h.  

[Proof: Since dp=0, the First Law can be written as dq = cpdT = dh. Also recall that 
enthalpy can be derived from the First Law.]  

To examine this temperature dependence, expand the differential dh, based on the 
definition of the total derivative (note that h = f(T,p):  

dh = (∂h/∂T)p dT + (∂h/∂p)T dp (definition of the exact differential),

and apply this to two states a and b (∆h=L=hb-ha):

d(∆h) = (∂∆h/∂T)p dT + (∂∆h/∂p)T dp.

For an isobaric process, only the second term vanishes and we have

d(∆h)p≡dL = (∂∆h/∂T)p dT = (∂hb/∂T)pdT - (∂ha/∂T)pdT

= (cpb - cpa)dT.

This latter equivalence is based on the definition of specific heat (see Section 
3.4), cp ≡ dq/dT = dh/dT for an isobaric process.

From the previous equation, we can write Kirchoff's equation

(∂L/∂T)p = ∆cp,                                  (3.15)*
Thus, the temperature dependence of L is related to the temperature 
dependence of cp.  

Bolton (1980) provides an empirical equation that has a linear form for the 
temperature correction of Lvl:

Lvl = (2.501 - aTc) x 106 J kg-1, (3.16)
where a = 0.00237 °C-1 and Tc is the dry bulb (actual air) temperature in °C.  

2.406240

2.453520

2.50080.33372.83450

2.54940.28892.8383-20

2.60300.23572.8387-40

2.8370-60

2.8320-80

2.8240-100

Llv (106 J kg-1)Lil (106 J kg-1)Liv (106 J kg-1)T (°C)
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3.11 Equivalent potential temperature and the satur ated adiabatic lapse rate
3.11.1 Equivalent potential temperature (approximate form)

Saturation → condensation → latent heating by condensation (Lvl, multiplied by the 
mass of water vapor condensed)

Expressed by a change in the saturation mixing ratio, rvs

[Question:  Is this an adiabatic process since dq ≠ 0?]  

Starting point – First Law (dq is now nonzero due to latent heating)

dq = -Lvldrvs = cpdT - αdp.                             (3.17)

Substitute the equation of state pα=RT for α, and rearrange 
terms:

Take the log differential of Poisson's eq. (3.10a):

or

− = −L
dr

T
c

dT

T
R

dp

pvl
vs

p d

d d T
R

c
d pd

p
ln ln lnθ = −

c
d

c
dT

T
R

dp

pp p d
θ

θ
= −
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Combine the preceding with eq (3.14):

− =
L

c T
dr

dvl

p
vs

θ
θ

Physical interpretation:  the latent heating changes the potential temperature of 
the parcel, such that a reduction in rvs (drvs < 0) corresponds to a positive dθ. 

The LHS of the preceding equation is cumbersome to integrate, as it currently 
stands, because Lvl = Lvl (T).  With the use of a graphical (thermodynamic) 
diagram, it will later be shown that












≈

Tc

rL
ddr

Tc

L

p

vsvl
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(this is an approximation, but it provides an exact differential)

Then we can integrate the following

d
L r

c T

dvl vs

p









 =

θ
θ

,

assuming that θ -> θe as rvs/T -> 0, to get

or

which is an approximation for equivalent potential temperature, θe.  

Note the approximations used here: 

(1) assumed that cp and Lvl are independent of rv and/or T and p;

(2) made the approximation in the differential (Lvl/cpT)drvs ≈ d(Lrvs/cpT).

In essence, we have assumed that Lvl is independent of temperature, which 
sacrifices precision in the integrated form.  Tsp in Eq (3.18) is the 
temperature of the parcel's saturation point (SP), traditionally called the 
lifting condensation level or LCL, and rvs is the mixing ratio at the LCL (or 
alternatively, the actual water vapor mixing ratio of the parcel).

(approximate form ) (rvs in kg kg-1) (3.18) θ θe
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A semi-empirical formula for θe, superior to Eq. (3.15) and accurate 
to within ~0.5 K, is














=

sp

vs
e T

r2675
expθθ

(I don’t recall the source of this, but it is given as Eq. (2.36) in Rogers and Yau
1989.  Note that the numerical value 2675 replaces the ratio Lvl/cp, so this implies 
some constant values for cp, and especially Lvl.  This form is good for quick, 
relatively accurate calculation of θe. An accurate calculation of θe requires an 
accurate determination of Tsp, θ, cp, and an integrated form that does not assume 
that Lvl is consant.  These steps are detailed in the paper by Bolton (1980).

(within 0.5 K)  (rvs in kg kg-1) (3.19)*

Note:  L/cp = 2.5 x106 / 1005  =  2488

Better!

L/cp = 2675; L = 2675 cp = 2675 x 1005.7
= 2.69 x 106

3.11.2 Equivalent potential temperature (accurate form)

Because θe is conserved for moist adiabatic processes, it is widely used, 
and its accurate calculation has received much effort.  An analytic solution is not 
possible.  The approximate form derived in the previous section may produce 
errors of 3-4 K under very humid conditions (i.e., large rv).  

Refer to the paper of Bolton (1980) for a presentation of the accurate calculation of 
θe.  We will consider this in some detail. 

[Assignment: Read the paper by Bolton (1980).]

http://ams.allenpress.com/pdfserv/i1520-0493-108-07-1046.pdf

Bolton’s curve-fitted form of θe is (more clumsy with the calculator, but is easily 
coded)


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












−= − )1081.01(00254.0

376.3
exp 3

vv
sp

e rr
T

θθ (3.20) 

(within 0.04 K) (rv in g kg-1)
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3.11.3 Saturated (psuedo) adiabatic lapse rate – preliminary form

The derivation of the saturated adiabatic lapse rate is complicated and requires 
advanced concepts/tools that are developed in later chapters.  The derivation below 
is first order only.  A complete derivation will be presented in Chapter 6 (my notes).

When water droplets condense within an ascending parcel, two limiting situations can be 
assumed:

1) the condensed water immediately leaves the parcel (the irreversible pseudo-
adiabatic process), or 

2) all condensed water remains within the parcel (the reversible saturated-
adiabatic process).  

In reality, the processes acting within clouds lie somewhere in between.  Here we 
consider the pseudo-adiabatic process.  

With the addition of latent heating, one may anticipate that a rising parcel undergoing 
condensation will cool less rapidly that an unsaturated parcel. Our starting point is 
(3.14), but with the hydrostatic equation term gdz substituted for αdp in (3.14).  We 
can then write

-Lvldrvs = cpdT + gdz. (remember dp/dz = -ρg)

Ignore the effects of water vapor being heated along with the dry air and 
write the above as

Applying the chain rule to drvs/dz

The second term g/cp defines the dry adiabatic lapse rate.  The  first term is new, and 
is the somewhat messy water vapor term (first term on the RHS). Solving the above 
for dT/dz, the approximate saturated adiabatic lapse rate is given as

A functional relationship for rvs is obtained from the Clausius-Clapeyron 
equation, to be considered Chapter 5 (my notes).  We also note that the magnitude 
of Γs is not constant, but decreases (nonlinearly) as T increases.  This is not obvious 
from Eq. (3.21), but will become more apparent when we examine and analyze the 
Clausius-Clapeyron equation. 
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More on the saturated adiabatic 
lapse rate

• Pseudo adiabatic process – all condensed 
water leaves the parcel; irreversible

• Saturated adiabatic process – all 
condensed water is carried with the parcel; 
reversible

• More on this in Chap. 6

More on θe

• Recall the approximate form (for illustrative 
puroses only):

• rvs is the initial parcel water vapor mixing ratio (rv)
• Tsp is the so-called “saturation point” temperature.  

Bolton defines this is TL.

θ θe
vl vs

p sp

L r

c T
=









exp
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How is Tsp determined?

• Tsp will be derived in Chap. 6
• For now, use Bolton’s formula:

.55
805.4lnln5.3

2840 +
−−

=
eT

Tsp

55

2840
)100/ln(

55
1

1 +
−

−

=
f

T

Tsp

e is water vapor pressure; T is temperature in K

f is relative humidity

3.12  Atmospheric Thermodynamic Diagrams

Refer to Chapter 9 in Tsonis.

thermodynamic diagram - a valuable tool to illustrate the relationship between dry 
adiabats, saturated adiabats and other thermodynamic variables

A number of thermodynamic diagrams used for atmospheric applications have been 
constructed.  We have considered only the simple p-V diagram so far (e.g., Fig. 3.1).   

Any diagram is based on two thermodynamic coordinates.  With two thermodynamic 
variables being defined, other variables and processes can be determined based on 
the Equation of State, First Law, and ancilliary relations that we have considered, or 
will consider.  

For example, the dry and saturated adiabatic lapse rates can (and must) be drawn on an 
atmospheric thermodynamic diagram to illustrate static stability. 

Once the coordinates are defined, then other isolines (e.g., saturation mixing ratio, 
dry/saturated adiabats, isotherms, isobars) can be defined and drawn on the diagram 
to graphically represent atmospheric processes and evaluate static stability.   
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The most commonly used diagrams are the skew-T and the tephigram.  Interestingly, 
it seems as though the "tropical" meteorologists favor the tephigram (with the 
exception of Rogers and Yau, who are Canadians).  The skew-T is most widely used 
in the research and operational sectors in the U.S.

An ideal atmospheric thermodynamic diagram has the following features:
• area equivalence: the area traced out by some process, e.g., the Carnot cycle, is                  

proportional to energy;
• a maximum number of straight lines;
• coordinate variables that are easily mearured in the atmosphere;
• a large angle between adiabats and isotherms;
• a vertical coordinate that is approximately linear with height.

The tephigram and skew-T closely satisfy nearly all these criteria.  The table below 
summarizes the important aspects for some diagrams.  Note that the skew-T, which 
we will use in this class, exhibits most of the ideal properties.  

See Irabarne and Godson (1973, pp. 79-90; handout) and Tsonis (Chapter 9) for a more 
complete discussion.

~45°yesNono-Tlnpln TRefsdal

~45°YesNoyes-ln pTEmagram

smallNoNoYes-pαClapeyron

~45°YesYesYes-pκdTPsueo-
adibatic

YesYesYespκTStuve

90°YesYesnoln θTTephigram

nearly 90° (variable)YesnoYesln pTSkew-T, ln p

isothermsadiabatsisobars

Angle between adiabats and 
isotherms

Straight line characteristicsOrdinateAbscissaDiagram

Table 3.3.  Summary of  thermodynamic  diagram properties.
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Various isolines are drawn on thermodynamic diagrams, including isobars, isotherms, 
lines of constant saturation mixing ratio, dry adiabats and saturated adiabats. 

On-line references:
Skew-T diagram:
http://www.sundogpublishing.com/AtmosThermo/Resources/SkewT.html

http://meteora.ucsd.edu/weather/cdf/text/how_to_read_skewt.html

A good tutorial with bad graphics:
http://www.ems.psu.edu/Courses/Meteo200/lesson5/demos/skew_plot.htm

Another one:
http://www.personal.psu.edu/jaz158/Skew-

T%20Manual.pdf#search=%22use%20of%20the%20skew-t%22

An excellent resource to access recent and archived soundings (U. Wyoming):
http://weather.uwyo.edu/upperair/sounding.html

Available commercially:
http://www.raob.com/
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Applications

• representation of vertical profiles of temperature and moisture 
(i.e., soundings)

• evaluation of static stability and potential thunderstorm 
intensity

• quick estimation of derived thermodynamic quantities such as:
relative humidity, given the temperature (T) and dewpoint 

temperature (Td)
mixing ratio, given Td and pressure p,
potential temperature and equivalent potential 

temperature, given p, T and Td
others

• determination of cloud/environment mixing processes
• determination of thickness (1000-500 mb thickness)
• mixing processes (advanced application)

Sources of skew-T diagrams (real-time and historical)

1) NCAR/RAP – the best Skew-T on the web:
http://www.rap.ucar.edu/weather/upper/

2) University of Wyoming – flexible site, data, skew-T or Stuve diagram; 
historical data
http://weather.uwyo.edu/upperair/sounding.html

3) Unisys
http://weather.unisys.com/upper_air/skew/

Other valuable information:

GOES satellite sounding page – good information on skew-T’s and their 
applications.  We will examine many of these during this course.
http://orbit-net.nesdis.noaa.gov/goes/soundings/skewt/html/skewtinf.html

RAOB program:
http://www.raob.com/RAOB5.htm
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Soundings plotted on a skew-T, ln p diagram

Variations in Tv vertical profiles around an 
atmospheric bore
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So what is a bore?

x
Schematic of a 

bore
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A more detailed analysis on the skew-T

Animation of parcel ascent

• Buoyancy and CAPE
http://meted.ucar.edu/mesoprim/cape/index.htm
http://meted.ucar.edu/mesoprim/cape/print.htm
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Chap. 3 HW

• Problems 1-7 in notes, plus Petty 5.4, 5.7, 
5.10
– ATS 441 students may waive number 1

Examples

3.39 (W&H)  A person perspires. How much liquid water (as a percentage of the 
mass of the person) must evaporate to lower the temperature of the person by 5 
°C? (Assume that the latent heat of evaporation of water is 2.5 x 106 J kg-1, and 
the specific heat of the human body is 4.2 x 103 J K-1 kg-1.)

3.38 (W&H)  Consider a parcel of dry air moving with the speed of sound, cs = 
(γRdT)½, where γ = cpcv = 1.40, Rd is the gas constant for a unit mass of dry air, 
and T is the temperature of the air in degrees kelvin.
(a) Derive a relationship between the macroscopic kinetic energy of the air parcel 
Km and its enthalpy H.
(b) Derive an expression for the fractional change in the speed of sound per 
degree Kelvin change in temperature in terms of cv, Rd, and T.


