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6.     ATMOSPHERIC THERMODYNAMIC PROCESSES 
 
Objectives: 

1. Develop other important applications of the fundamental relations that we have 
considered to this point. 

2. Use and applications the skew-T diagram to examine atmospheric processes. 
3. Examine some important atmospheric thermodynamic processes.  In particular, we will 

explore the behavior of water vapor and its effects on atmospheric processes. 
 
6.1  Atmospheric thermodynamic processes 

6.1.1  Some processes that define additional thermodynamic variables 

There are four natural processes by which saturation can be attained in the atmosphere.  These 
are: 
• isobaric cooling (dq≠0, rv=const), e.g., by radiative cooling (diabatic cooling, dq < 0), in 

which the temperature T approaches the dew point temperature Td; 
• evaporational cooling (dq≠0, rv≠const) in which a decrease in T and an increase in Td result 

in the wet-bulb temperature Tw, (at which point the air is saturated); 
• adiabatic cooling (dq=0, rv=const) in which saturation is produced at the saturation point 

temperature1 Tsp by adiabatic expansion; 
• mixing of two air masses – in this case saturation can be analyzed from a “saturation point” 

mixing analysis. 
 
a)   Isobaric cooling and the dew point temperature, Td.  

This is an isobaric process in which (radiational) cooling occurs in the presence of 
constant water vapor (e=const or rv=const).  Under clear sky conditions the radiational cooling 
frequently reduces the surface temperature to the dewpoint temperature.  This is primarily a low-
level cooling as illustrated in Fig. 6.1, a 1200 UTC sounding from Salem, Oregon.  In this case, T 
and Td are nearly superimposed (i.e., the air is saturated) and fog was reported in the region. 

Note:  This sounding was obtained from the web site  

  http://www.rap.ucar.edu/weather/upper.html 

Refer to T, Td time series over night from http://vortex.nsstc.uah.edu/mips/data/current/surface/. 

In this case we have dp=0, dq≠0 and dh=dq. The physical process is simple:  As isobaric cooling 
proceeds with no change in the absolute moisture content, a temperature is reached in which the 
air just becomes saturated (T=Td, or e = es).  We also will consider the relationship between Td 
and the relative humidity f.  We can write 

 rv = rvs (p,Td) 

and use an expression for es(T) and the approximate relation rvs=εes/p.  We begin with the 
integrated approximation of the C-C equation 

 es = Ae-B/T         (6.1) 

 

where A = 2.53 x 108 kPa and B = 5.42 x 103 K. 

                                                           
1 The saturation point temperature is also known as the temperature of the lifting condensation level (Tlcl) or 
the isentropic condensation temperature (Tc). 
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Fluctuating wind 
(turbulent bursts) 
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We then take the natural log of each side (i.e., ln es = ln A - B/T), utilize the approximate formula 
es=prvs/ε, and finally solve for T (which is Td in this case).  The approximate analytical 
expression for Td in terms of rv and p can then be expressed as 
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This relation explicitly shows that Td is a function of rv and p.  Given values of rv and p, one can 
graphically determine Td on a skew-T as shown in Fig. 6.2 below.  As an extension of this 
problem, we will consider fog formation in Section 6.4.1. 

 
Fig. 6.1.  Sounding of T and Td plotted on a skew-T, ln p diagram.  The sounding was acquired from a 
radiosonde released at 1200 UTC, 6 October 1998, from Salem, Oregon.  The very lowest levels are 
saturated since T and Td are nearly coincident.  Fog was reported in the area 
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Figure 6.2.  Illustration of processes by which saturation may be achieved in the atmosphere.  This skew-T diagram 
also illustrates the graphical method to determine Td, Tw and Tsp.  Illustration of Normand's rule.   

 
 
Now we will investigate the relationship between Td and relative humidity f.  Our goal 

here is to determine how relative changes in Td are related to relative changes in f.  [The 

following is extracted from Iribarne and Godson 1973].  Again, we utilize the formula  

ε
vpr

e ≅  

and take the log differential to get 
 
 dlne = dlnp + dlnrv.        (6.3) 
 
We combine (6.3) with the Clausius-Clapeyron equation, written below in differential form 
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Dividing both sides by Td yields 
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where the latter approximate equality is obtained from the term [RvTd/Lvl] by assuming Td=270 
K, Lvl=2.5x106 J kg-1, and Rv= 461 J kg-1 K-1 .  This result indicates that the relative increase in Td  
(here, relative refers to the ratio dTd/Td, or an incremental change relative to the total value) is 
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about 5% the sum of the relative increases in p and rv.  We now integrate the C-C eq. (6.4) above 
to get 
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We then solve for so-called dewpoint depression (T-Td), use decimal logarithms [using the 
definition that log10 x = ln x / ln 10 = 0.43429 ln x], and subsitute for constants to get 
 
 (T-Td) = 4.25x10-4 T⋅Td(-log10f) 
 
For T⋅Td =2902 (i.e., assuming T = 290 K and Td = 290 K) we have 
 
 T-Td ≈ 35(-log10f)        (6.5) 
 
Then for f=0.8, (T-Td) ≅ 3.5 °C = 6.3 °F.  Thus, a change of (T-Td) every 1 °F translates to a 
change in f of about 3.2%.  This verifies my general rule of thumb that, for f>0.8, the dewpoint 
depression, T-Td, is 1 °F for every 3% change in f, for f < 100%.  For example, if T=75 °F and 
f=0.88, then Td≅71 °F.   
 
Observational question:  What is the range of Td in the atmosphere?  What is the 
upper limit of Td, and where would this most likely occur? 
 
b)   Isobaric wet-bulb temperature (Tiw) 

We will consider the isobaric wet-bulb temperature Tiw here – there is also an adiabatic 
wet-bulb temperature, Taw.  The wet-bulb temperature is achieved via the process of evaporation.   
Practical examples of  Tiw are evaporation of rain and the evaporation of the wet bulb wick on the 
sling psychrometer, a device which measures the dry and wet-bulb temperatures.  While the 
process is isobaric (ideally), the parcel gains rv at the expense of a decrease in T.   Assuming that 
a parcel of unit mass (1 kg) contains rv of water vapor, we can write from the First Law (p=const) 
  
 dq = cpd(1+0.887rv)dT = cpmdT        [cp=cpd] 
 
The heat loss from evaporation (including a mass rv of water vapor) is 
 
 (1+rv)dq = -Llvdrv 
 
Equating the two expressions above gives 
 
 cpddT = -Llvdrv[1/(1+rv)][1/(1+0.9rv)] ≅ -Llvdrv(1-1.9rv) 

 cpdT ≅ -Llvdrv   (within ~2%, since rv ~ 0.01)     (6.7) 

 
Assuming that Llv and cp are constant (which is a good assumption since the temperature 

reduction ∆T=T-Tiw associated with evaporation is typically <10 K) we can integrate the above 
to get the wet-bulb depression  [note limits of integration here] 
 
 T-Tiw = (Lvl/cp)(rvs(Tiw,p) - rv).     [note the limits of integration] 
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Introduction of the Clausius-Clapeyron formula (5.5) [es(T) = e-B/T] yields an iterative formula for 
Tiw: 
 

 Tiw = T - (Llv/cp)[(ε/p)Ae-B/Tiw  - rv],      (6.8a) 

 
where T and rv are the initial parcel values. 
 
This provides a relation between vapor pressure (e) and the wet bulb depression, (T-Tiw): 
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The factor 
vl

pd

L

pc

ε
 in the above equation is defined as the psychrometric constant (which varies 

with both p and T).  Its value at sealevel is about 0.65 mb/K.   In Eq. (6.8b), T is usually referred 
to as the dry bulb temperature, and Tiw is the wet-bulb temperature. 
 
Discuss the sling psychrometer and psychrometric tables. 
 
(Insert psychometric equation development here (Bohren and Albrecht, pp 
282-284).   
 
c)   Isobarid equivalent temperature (Tie) 

This is the temperature achieved via isobaric (p=const) condensation (latent heating) of 
all water vapor.  Tie is a fictitious temperature – there is no atmospheric process that is associated 
with it.  (In fact Tsonis notes that Tie is the reverse of an irreversible process associated with Tiw.)  
Thus, this is also referred to as the isobaric equivalent temperature (Tie).  This process is similar 
(but opposite) to that of the isobaric wet-bulb temperature, Tiw, so the same equation applies.  In 
this case, integration of (6.7) gives 
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or 
 
 Tie = T + Llvrv/cp.        (6.9) 
 
How does the isobaric equivalent temperature differ from the adiabatic equivalent temperature?  
What is the relation between adiabatic temperature and adiabatic equivlanet potential 
temperature? 
 
[Brief discussion here.]    
 
Tie and Tiw are related by Eq. (6.7) and represent the respective maximum and minimum 
temperatures that an air parcel may attain via the isenthalpic (adiabatic and isobaric) process. 
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d)   Saturation point temperature (Tsp).   

This is also called the "isentropic condensation temperature" (Tc) as defined by Bolton 
(1980), or the more classical temperature of the lifting condensation level (Tlcl).   Tsp is achieved 
via adiabatic lifting (cooling by expansion).  The value of Tsp is easily found graphically on a 
skew-T diagram (see Fig. 6.2).  Recall that the adiabatic equation can be derived from the First 
Law and equation of state to get 
 
 cpdT = RdT(dp/p). 
 
Also recall that the integrated form is Poisson's equation 
 

 (T/To) = (p/po)κ            (6.10) 
 
We now note that Tsp = Td(rv,psp).   Substitution of (6.2), the expression for Td, into (6.10) gives 
an iterative formula of the form (derivation given in Rogers and Yau 1989) 
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More accurate (and explicit) empirical expressions are given by Eq. (21) in Bolton (1980): 
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For these two formulations, Tsp is in °C,  T in deg K, f in %, and e in mb.  The graphical method 
of determining Tsp is known as Normand’s Rule, illustrated in Fig. 6.2.  (To be clarified in 
class.) 
 

Adiabatic expansion and condensation 

We now ask the question:  Does adiabatic expansion necessarily produce condensation? 

Before answering this, let’s consider the following example hypothetical problem:  
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Example: 

Condensation of water can occur in updrafts because the saturation mixing ratio decreases in 
adiabatic ascent.  This property of water can be attributed to the high value of latent heat of condensation.  
It has long been speculated that there may be trace gases which, because of low values of L, would 
condense in downdrafts (Bohrens 1986).  Show that the criterion that must be satisfied if vapor is to 
condense in downdrafts (adiabatic compression) is 

L < cpT/ε. 

Solution: 

From the definition of f=e/es, we can write dlnf/dz = dlne/dz – dlnes/dz.  Since e = rvp/ε (and mixing ratio rv is 
constant), dlne = dlnp.  Then dlnf/dz = dlnp/dz – (dlnes/dT)(dT/dz).  We now use the C-C equation dlnes/dT 
= L/(RvT

2) and insert into the previous equation:  df/dz = p-1dp/dz – (L/RvT
2)dT/dz.  Recall that the dry 

adiabatic lapse rate (dT/dz here) is dT/dz = -g/cp.  Also, p-1dp/dz = p-1g/α = g/RdT.  Substitution of these into 
the previous yield dlnf/dz = g/RdT – gL/(cpRvT

2) = g/(RdT)[1-LRd/(cpRvT)] = g/(RdT)[1-(Lε/cpT)].  Thus, if f 
increases with decreasing height, the term in brackets should be > zero, i.e., 1 – Lε/CpT > 0. 

Rewriting, L < cpT/ε is the criterion for saturation upon descent.  For the atmosphere, cp = 1005, T = 290, 
and ε = 0.622, we have L < 4.7x105 J kg-1.  This is clearly not satisfied for water, but is possible for some 
volatile substances. 

 

Recall that we are considering saturation by adiabatic expansion: 

adiabatic expansion →  cooing → tendency towards saturation 

Taking the log differential of relative humidity, f=e/es we get 

 dln f = dlne – dlnes 

Note that the ratio e/p = Nv is constant during ascent, which is equivalent to saying that the 
mixing ratio rv = εe/p is conserved.  Furthermore, from Poisson’s equation, Tp−κ is constant (i.e., 
θ is conserved).  Since e = Nvp, then 

 Te−κ = Nv
−κ x const = new const 

or T = c1e
κ 

 

Taking the log differential of the above, we obtain 

 dlnT = κdlne (or dlne = κ-1dlnT). 

From the C-C eq. 

and f = e/es,  we can write 

 

 dlnf = dln(e/es) = dlne – dlnes 

where the first term on the RHS is the change due to a decrease in p (and e), and the second term 
represents the change in f from a decrease in T and es(T).  These terms have opposite signs; 
therefore, adiabatic expansion could increase or decrease f.  To clarify this point, we can write 
the above to represent the slope, df/dT, the sign of which we want to determine: 
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This equation shows that df/dT < 0 (i.e., f increases when T decreases) when the condition 

 cpT < εLvl or  T < εLvl/cp ≅ 1500 K. 
 
Determination of cloud base from the dew point depression, (T-Td) 

There is a practical application that is closely assocated with Tsp.  In this application we will 
derive a relationship between the height of Tsp and the surface dewpoint depression, T-Td.   We 
assume that a surface parcel rises (adiabatically) until condenstion occurs (this defines cloud 
base).  In reality, rv typically exhibits a negative vertical gradient, because the source of rv is 
surface evaporation, and the sink is mixing from above.  The relation that we derive will provide 
a useful formula for estimation of the base of cumulus clouds, given a measurement of (T-Td) at 
the surface. 

We know that the lapse rate for a subsaturated parcel is given by the dry adiabatic lapse rate, 
approximately 10 K km-1.  To estimate the height at which condensation occurs, we need to 
examine the variation of Td along a dry adiabat.  This is given by the C-C eq. 

Using the relation dlnT = κdlne (κ = Rd/cpd from p. 7) we can rewrite the above as 

 

For T ≈ Td ≈ 273 K, and using finite differences (and the implied assumptions), we obtain the 
approximate relation  

 ∆Td ≈ (1/6)∆T, 

i.e., the magnitude of the Td decrease is about one sixth that of the adiabatic lapse rate for a 
parcel undergoing adiabatic ascent.  This is shown in Fig. 6.3 on a skew-T schematic. 

 

Fig. 6.3.  Illustration of the relation between decreases in T and Td during adiabatic lifting of a 
subsaturated parcel. 
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6.2 The reversible saturated adiabatic  process and related items 
 
6.2.1 Derivation of the reversible saturated adiabatic lapse rate 
 
We have considered a related topic in the derivation of the pseudo adiabatic lapse rate and θe.  In 
Chap. 3 (notes), we considered a preliminary form of the pseudo-adiabatic lapse rate, Eq. (3.21), 
reproduced here: 
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The term in the denominator required the Clausius-Clapeyron Equation to provide an expression 
for drvs/dT.  This term is related to the magnitude of latent heating within the saturated parcel.  
As shown in Fig. 6.4, the local lapse rate along the saturated adiabat in the lower right side 
(warm, high water vapor content) is relatively low, while at low pressure and cold temperature 
(upper part) the local value of the saturated adiabat approaches that of the dry adiabat. 
 

 
 
Figure 6.3.  Variation in the local value of dT/dz along the saturated adiabat (bold solid line) on the Skew-
T, ln p diagram. 
 
We will now consider the behavior of the saturated adiabat in more detail. 
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One can make two limiting assumptions regarding the condensed water:   
(i) It is carried along with the parcel. 
(ii)  It immediately leaves the parcel (by removal – called sedimentation – from the 

precipitation process).   
 
In reality, the clouds in the atmosphere are somewhere in between these two extremes.  The latter 
process is the pseudoadiabtic process and simplifies matters since one need not consider the heat 
content of the condensed water (condensate) that is carried with the parcel.  This process (and 
lapse rate) was considered in Section 3.11.3, Eq. 3.21 (above).   We also note that the 
psuedoadiabtic process is irreversible, whereas the saturated adiabatic process (i) is reversible.  It 
turns out that the lapse rate defined by each is nearly the same.   
 
The starting point differential equation (First Law) for the reversible process has an extra term 
that expresses that amount of heat contained by the condensate: 
     
 [ ] ρ/)1()( dpdTrcrcrLddTrc vsvvvspdvsvlaw −+−=−    (6.11) 

 
where ra is the weight of condensed water per gram of air (this will be referred as the adiabatic 
liquid water content).  Our starting point for the pseudo-adiabatic lapse rate was a simplified 
form of (6.11), already having the approximation Lvl=const.  We also ignored the contribution of 
enthalpy from moist air, the second term within the brackets on the RHS of (6.11).  The key term 
here is the first term on the LHS, cwradT, the heat stored by the condensate. 
 
Introducing the First Law (p=ρRdT) and then expanding terms in (6.11) yields 
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Refer to the handout, copied from Chapter 6 of the book 
Atmospheric Thermodynamics (Bohren and Albrecht (1998) for 
details of the derivation. 
 
The final form (taken from Iribarne and Godson, 1973) is 
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where Rm = Rd(1+0.61rv), the total water mixing ration rtw = rvs + ra (ra is the adiabatic mixing 
ratio of condensed water), and Γd = g/cpd. 
 
The formula for the pseudoadiabatic lapse rate is (assuming that no liquid water remains with the 
parcel, i.e., rtw - rvs = ra = 0 in the above equation). 
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One can also make the following approximations in Eq. A2: 
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to get the approximate form for the pseudoadiabatic lapse rate (also letting Rd ≈ Rm): 
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This is an approximation for the local slope  and should never be used be used for calculations 
requiring an accurate parcel T, since the errors will accumulate to unacceptably high values 
in the integration. 
 
Example (Iribarne and Godson, p. 158): 
 
This will illustrate the errors for a saturated parcel with the following values: 
 
T = 17 °C, p = 1000 mb, es = 19.4 mb, rvs = 0.0123 kg kg-1.  Also assume that ra = 0.004 kg kg-1. 
 
Equation A1, A2 and A3 yield the following values: 
 

Γs-rev = 4.40 K km-1 
 
Γs-pseudo = 4.42 K km-1 
 
Γs-approx = 4.50 K km-1 

 
These differences are appreciable.  Another example take from Emanuel (1994, p. 133) illustrates 
how the differences can accumulate, as shown below in Table A1.  Also refer to Bohren and 
Albrecht, Fig. 6.5, reproduced below. 
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Table A1.  Parcel temperature obtained from Γs-rev
 (Eq. A1) and Γs-pseudo (Eq. A2), for a saturated 

parcel ascending with initial conditions p = 950 mb, T = 25 C (very wet) 

p (mb) Ts-rev (K) Ts-pseudo (K) Ts-rev-Ts-pseudo (K) Tρ-rev – Tρ-pseuo 
950 298.15 298.15 0 0 
800 292.36 292.35 0.01 -1.04 
700 287.77 287.73 0.04 -1.75 
600 282.32 282.22 0.10 -2.44 
500 275.59 275.36 0.23 -3.07 
400 266.78 266.27 0.51 -3.51 
300 254.10 252.90 1.21 -3.39 
200 233.30 230.32 2.98 -1.76 
100 195.77 189.96 5.81 1.70 

 
The right-most column in Table A1 is the difference between density temperatures (Tρ) for the 
two processes.  Density temperature is the temperature dry air would have to yield the same 
density as moist, cloudy air (i.e., virtual temperature including water vapor and cloud condensate 
– more on this later). 
 
 

 
Figure 6.5.  Figure taken from Bohren and Albrecht (1998) 

 
 
Notes: 
 

1. Perhaps the most common application involves the calculation of convective available 
potential energy, which requires an accurate calculation of the parcel T during saturated 
ascent.  CAPE is discussed in Chap. 8 of the Notes and pages 139 and 153 of Tsonis. 

2. If we recognize that θe is conserved along a saturated adiabat, then a numerical 
calculation of Ts should conserve θe.  This can be used as a check for the accuracy of the 
Ts calculation. 

3. After having considered the differences between the reversible and pseudo saturated 
adiabatic processes, we can ask the question “Which is the best to use?”  We cannot fully 
answer this question until we have a greater understanding of cloud physics and 
microphysical structure of clouds. 



10/06/08 15 

 
Effects of freezing.  If we use the latent heat of deposition, then a difference will exist between 
Γs for condenstation and deposition.  This difference is shown in the figure below. 
 

 
 

Figure 6.6.  Figure taken from Bohren and Albrecht (1998) 
 
Figure 6.7 defines the relative orientation or slope (magnitude) of each on a skew-T  diagram.   
 
The magnitude of the saturated adiabatic lapse rate is slightly less than that of the 
pseudoadiabatic lapse rate.  Similarly, the magnitude of the dry adiabatic lapse rate (for dry air) 
is slightly greater than its counterpart for moist (rv nonzero) air, since the effective cp is larger 

[cp(1+0.887rv)].   More specifically, we can write the lapse rate for moist air as 
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The ratio of the dry to moist adiabatic lapse rates is 
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For a mixing ratio of 20 g kg-1, this ratio is 0.983.  Thus, a difference up to ~2%, or 0.2 K km-1, is 
possible.  This is potentially significant! 
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Figure 6.7.  Relative orientation of fundamental lines on a skew-T, ln p diagram. 
 
6.2.2  Adiabatic liquid water content 
 
Adiabatic liquid water content is defined as the amount of water condensed, during the reversible 
(saturated) adiabatic process, during ascent above a parcel's level of condensation or saturation 
point (SP).  This value has relevance to the onset and rate of growth of precipitation by the 
collection process (to be considered later under our study of cloud physics).  In cumulus clouds, 
the ratio of actual measured cloud water mixing ratio (rc) to the adiabatic mixing ratio (rca) is 

typically a small fraction, i.e., rc/rca < 1.  This is a result of (i) mixing between the cloud and its 
environment, and (ii) removal of rc by the precipitation process (large particles collect the smaller 
cloud droplets) in the case of precipitating clouds.  There are instances of nearly adiabatic liquid 
water in the lower regions of vigorous nonprecipitating cumulus convection and in 
thunderstorms.  [What factor(s) produce a ratio rc/rca > 1?]  The adiabatic liquid water content, χ, 
is usually expressed in g m-3 by multiplying rca by density ρ.  Typical values of rc in clouds are in 
the range 0.5 to 3 g m-3.  During saturated adiabatic ascent, a reduction in water vapor (-drvs) is a 
gain in cloud condensate (rc), such that the total water is conserved.  Thus,  
 
 dχ = ρdrca = -ρdrvs.        (6.12) 
 
The value of χ can be derived from the adiabatic equation derived previously, and can be related 
to the difference between the dry and saturated adiabatic lapse rates (this is a homework 
problem).  χ is easily found graphically as shown in the figure below.  Its value requires 
knowledge of cloud base (saturation point) conditions (rvs,p) and is computed as 
 
 χ =  ρm [rvs(Tsat,p)θe=const

 - rvs(Tsp,psp)], 

 
where the temperature Tsat is evaluated along a saturated adiabat (line of constant θe). 
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Figure 6.4.  Graphical determination of adiabatic liquid water content. 
 
6.2.3  Relation between θe and θw 
 
The calculation for θe was presented in increasing levels of accuracy in this chapter, and in Chap. 
3.  One can determine θw if Tw is known, and then calculate the temperature of the parcel after it 
descends along a saturated adiabat to 1000 mb.  In a sense, this process is the opposite of that by 
which θe is achieved, where the parcel ascends along a saturated adiabat until all water vapor is 
removed by condensation.  This numerical computation of either of these processes would 
require use of Eq. A1 or Eq. A2. 
 
The derivation of θw begins with the assumption that the parcel is at its saturation point. 
 
We start with the differential equation 
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and integrate as follows 
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Integration yields 
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This is a transcendental equation that requires interation.  Since the exponent term is less than 
~0.2, the (A5) can be approximated as 
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If we can further assume that the ratios θ/Tsp and θ/θw are near unity, then further approximation 
provides the following: 
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which establishes a relationship between θw and θe, both of which are conserved for saturated 
adiabatic processes. 
 
6.2.4   The wet equivalent potential temperture (θq) 

 
See RY, pp. 25-26 for derivation.  This parameter is conserved for saturated processes, and hence 
is useful in analyzing mixing processes in clouds.  More on applications of this will be 
considered later. 
 
 
 
 
6.4 Example computations using the skew-T diagram. 
 

a)  Given:  p=1000, T=20 oC,  Td=10 oC (variables commonly reported) 

     Find:  rv, f, θ,  Tv, Tsp, Te, Tae, θe, Tw, θw, χ(at 50 kPa) 

 
 
6.5   Summary 
 
The figure below (i) summarizes the relative magnitudes of the basic and derived thermodynamic 
variables that we have considered to this point and (ii) illustrates the graphical determination of 
some of these.  We can note that the non-potential temperatures exhibit the inequality: 
 
 Tsp < Td < Tw < T < Tv < Tie < Tae. 
 
Finally, the conservative properties of the various thermodynamic variables are indicated in the 
table below. 
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Table 6.2.  Conservative properties of several thermodynamic parameters (after Iribarne and Godson 
1973). 
 
Variable     Process: 
  Isobaric    Isobaric  Non-saturated Saturated 
  warming or  evaporation or  adiabatic  adiabatic  
  cooling (without  condensation expansion or expansion or 
  condensation or    compression compression 
  evaporation)      (reversible) 
  (e.g., radiation)  (e.g., rainfall) 
_____________________________________________________________________________________ 
f  NC (not conserved) NC  NC  C 
e or Td  C  (conserved)  NC  NC  NC 

rv  C   NC  C  NC 

Tw or Tae NC   C  NC  NC 

θ  NC   NC  C  NC 
θe or θw  NC   C  C  C 
Tsp  NC   NC  C  C 

T  NC   NC  NC  NC 
_____________________________________________________________________________________ 
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Figure 6.5.  Summary of temperature/humidity parameters, plotted on a tephigram.  Line orientations are 
similar for a skew-T, ln p diagram.  (After Iribarne and Godson, 1973) 
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Problems -- Chap. 6 
 
 
1) A chinook wind is taking place on the leeward side of a mountain in New Mexico.  The air 

within this hot, dry wind system has the following parameters:  p = 1000 mb, T = 38 °C, rv =  
4 g kg-1.  (a) Could this air be the same as that at the 1000 mb level on the windward side of 
the mountains, where the air has the following parameters:  T = 21.5 °C, rv = 10 g kg-1?  (b) 
Could it be the same as that at the 800 mb levels where T = 5 °C and rv = 5 g kg-1?  State 
reasons for your answers, and also use a skew-T diagram to support your answers.  [Hint: 
Consider what variables are conserved for this process.] 

 
2) What is the maximum wet-bulb depression, T-Tw, possible for T = 0 °C and p = 100 kPa? 
 
3) With regard to the equation that precedes Eq. (6.5), and the associated discussion, compare 

and discuss the relation between (T-Td) and ∆f for the following extreme values of T and Td. 
a)  T = 310 K, Td = 280 K 
b)  T = 250 K, Td = 248 K 
Determine the actual value of f for cases (a) and (b), and the rule of thumb relation between a 

∆T of 1 °F and the corresponding ∆f. 
 
4) Show that the plot of es vs. T has positive curvature for temperatures normally encountered 

in the atmosphere.  (Recall that the mathematical definition of curvature is defined second 
derivative of the function.) 

 
5) An air parcel has the following thermodynamic parameters:  T = 25 °C, f = 0.75, p = 90 kPa.  

When possible, calculate the following as accurately as possible (when calculation is not 
readily done, find the value graphically, but also indicate, with appropriate equation(s) how 
you would compute precise values): 
a. vapor pressure, e 
b. density of water vapor, ρv 
c. water vapor mixing ratio, rv 
d. specific humidity, qv 
e. density of dry air, ρd 
f. virtual temperature, Tv 
g. isobaric wet-bulb temperature, Tiw 
h. adiabatic wet-bulb temperature, Taw 
i. saturation point temperature, Tsp 
j. potential temperature, θ 
k. isobaric equivalent temperature, Tie 
l. adiabatic equivalent temperature, Tae, 
m. equivalent potential temperature, θe 
n. wet-bulb potential temperature, θw 
ο. adiabatic liquid water content at 500 mb, χ 

 
"Derive an expression for the rate of increase of 
relative humidity with respect to height for a well-
mixed unsaturated layer.  Use this expression to 
evaluate the depth of layer required so that the top is 
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just saturated given that the base has a relative 
humidity RH of 30%. What does this tell you about the 
likely outcome of mixing in the troposphere (where RH 
is typically 30% or more)?" 
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Some useful tables for moist thermodynamics: 
 
Table 6.x.  Saturation vapor pressure and mixing ratio values over plane water and ice surfaces 
(from List, 1949, based on Goff-Gratch formula) 
 

T (°°°°C) esw (mb) esi (mb) rvs (g kg-1) rvsi (g kg-1) 
-70  0.0026  0.0016 
-60  0.011  0.0067 
-50 0.064 0.039 0.038 0.0246 
-40 0.189 0.128 0.113 0.080 
-30 0.509 0.380 0.303 0.238 
-25 0.807 0.632 0.481 0.400 
-20 1.254 1.032 0.747 0.646 
-15 1.912 1.652 1.14 1.034 
-10 2.863 2.597 1.71 1.627 
-5 4.215 4.015 2.52 2.518 
0 6.108 6.107 3.66 3.839 
5 8.719  5.23  
10 12.272  7.39  
15 17.044  10.31  
20 23.373  14.23  
25 31.671  19.44  
30 42.430  26.32  
35 56.236  35.38  
40 73.777  47.27  
45 95.855  62.86  
     

 
log10esw = -7.90298(Ts/T -1) + 5.02808 log10(Ts/T) - 1.3816x10-7(1011.344(1-T/Ts) -1) 
+8.1328x10-3(10 -3.49149 Ts/T-1 - 1) + log10ews 
 
where Ts = 373.15 K, To = 273.15 K 
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