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5. The water-air heterogeneous system 
 
Aside:  The following is an on-line analytical system that portrays the thermodynamic properties of water 
vapor and many other gases. 
 
http://webbook.nist.gov/chemistry/fluid/ 
 
5.1 Preliminaries 
 
a)  Review on equilibrium: 

thermodynamic equilibrium --  a system is in thermal equilibrium (no temperature 
difference) 
mechanical equilibrium -- a system in which no pressure difference exists 
between it and its environment 
chemical equilibrium -- condition in which two phases coexist (water in this 
case) without any mass exchange between them 

b) For a homogeneous system, 2 intensive properties describe the thermodynamic state 
(consider the eq. of state pα = RT); this is not the case for a heterogeneous 
system consisting of dry air, water vapor and condensed water. 

c) Consider an extensive property Z of the water-air system and define it as 
 Ztot = Zg(p,T,nd,nv) + Zc(p,T,nc) 
The total differential of this property is the following: 

 

 
Example of chemical equilibrium 
A closed container initially filled partly with water in a vacuum will be in chemical 
equilibrium when p = es (the saturation vapor pressure).  At this point, the number of 
molecules passing from liquid to vapor equals the number passing from vapor to liquid. 
 

 
 
 
5.2   Chemical potential 
 
 If a single molecule is removed from a material in a certain phase, with the temperature and 
pressure remaining constant, the resulting change in the Gibbs free energy is called the chemical 
potential of that phase.  In other words, the chemical potential can be defined as the Gibbs free energy 
per molecule.  (Recall, dg = -sdT + αdp for a reversible transformation.) 
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 The chemical potential of an ideal gas is defined by 
 

 µ = µo + RTlnp,  [dµ = RTdlnp = RTdp/p = αdp] 
 

where µo is the chemical potential for p = 1 atm. 
 
For an ideal gas, 
 
 ∆g = µ2 - µ1 = RTln(p2/p1)    [= -wmax] 
 
 Example  (Taken from Wallace and Hobbs, pp. 101-102):  Derive an expression for the 
difference in chemical potential between water vapor and liquid water, µv - µ

l
, in terms of the bulk 

thermodynamic properties:  e (the partial pressure of water vapor) and T. 
 
For a (vapor) pressure change de, we have (from dg = -sdT + αdp), for vapor and liquid, respectively, 
 
 dµv = αvde, 

     dµl = αlde, 
 
where αv is the specific volume of a water vapor molecule and αl is the specific volume of a liquid water 
molecule.  Then it follows, by combining the equations above, that 
 
 d(µv - µl)  =  (αv - αl)de  ≅  αvde        (5.1) 
 
since αv >> αl.  The equation of state applied to just one water vapor molecule is 
 
 eαv = kT,          (5.2) 
 
where k, Boltzmann's constant whose value is 1.381 x 10-23 J K-1 molecule-1, is used in place of the gas 
constant to represent one molecule.  Upon solving (5.2) for αv, we can write (5.1) as 
 

 d(µv - µl) = kT
de

e
.         (5.3) 

 
Since µv = µl at e = es (saturation, which is equilibrium) we can integrate (5.3) as follows: 
 

 
0

µ µv l−
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e

e
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∫ kTde/e, 

 
or 
 

 µv - µl = kT
e
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







   (for one molecule).      (5.4)* 
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This result will be used later in development of the theory of nucleation of water droplets from the vapor 
phase.  [Nucleation is therefore closely related to thermodynamics.] 
 
5.3   Changes in state 
 
 We will now consider various equilibria for water in the atmosphere. 
 
5.3.1 Gibbs phase rule 
      
 For a system of C independent species and P phases, the Gibbs phase rule states that the number 
of degrees of freedom F (i.e., the number of state properties that may be arbitrarily selected) is 
 
          F = C - P + 2          (5.5) 
 
If we deal with a single component system (C=1) such as water then we can form the table below: 
 
 

P (number of phases) F  (degrees of freedom) 
1 2 
2 1 
3 0 

 
Thus, for a single existing phase (such as water vapor) we may arbitrarily choose p (e) and T (i.e., the 
equation of state).  For two phases, the choice of either p or T determines the other, and for three phases 
(i.e., the triple point) there is no choice, i.e., this point has specific values for p and T.  The phase 
diagram for water is depicted in Figs. 5.1 and 5.2. Along the two coexisting phase lines, one degree of 
freedom is possible, within each phase two degrees of freedom exists, and with three coexisting phases 
(the so-called triple point) there are none.  We will now consider the phase lines. 
 

 



10/06/08 4 

Fig. 5.1.  Phase transition equilibria for water.  Pt is the triple point, and Pc is the critical point, above which no 
distinction between the liquid and vapor phases exists.  From Iribarne and Godson (1973). 

Fig. 5.2.  PT phase diagram for water.  Stable phase boundaries are shown by solid lines; metastable phase boundaries are 
indicated by dashed lines.  Note that the ordinate in exponential in pressure, in contrast to the linear p dependence in Fig. 5.1.  
From Young (1993), p. 401. 
 

 
Fig. 5.3  Thermodynamic surface for water.  Taken from Iribarne and Godson (1973). 
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5.3.2 Thermodynamic characteristics of water 
 
Key points on a p-T diagram for water (Figs. 5.1, 5.2 and 5.3): 
 
a) triple point:   pt = 610.7 Pa = 6.107 mb; Tt = 273.16 K = 0.01 °C;  
     αit = 1.091 x 10-3 m3 kg-1; αwt=1.000 x 10-3 m3 kg-1; αvt = 206 m3 kg-1 
 
a) critical point: Tc = 647 K; pc = 218.8 atm; αc = 3.07x10-3 m3 kg-1 
 
 
5.3.3 Equilibrium between solid and liquid - The Clapeyron Eq. 
      
The lines drawn in Figs. 5.1-5.3 are represent the equilibrium condition between two phases of water.  
These are important in our study of thermodynamics, and the equilibrium line between the liquid and 
vapor phase is particularly valuable.  These equilibrium conditions can be expressed analytically, and the 
basis for the functions derived in the following is the First Law, from the the Gibbs free energy is 
derived. 
 
 At equilibrium we have dg=0, so therefore  g(solid) = g(liquid). 
 
 -sliquiddT + αliquiddp = -ssoliddT + αsoliddp 

 
Define the following: 
 
 ∆s = ssolid - sliquid 

 ∆α = αsolid - αl iquid 

 
Then 
 
 ∆sdT = ∆αdp. 
 
We solve this as follows, and utilize the definition of entropy change for a phase transition (Ch. 4): 
 
 dp/dT = ∆s/∆α = -∆Hfusion/(T∆α)   Clapeyron Equation   (5.6) 
 
where the latter equality is based on the entropy change associated with a phase change, defined in Chap. 
4:  ∆s = -∆Hfusion/T. 
 
This expression is the Clapeyron Equation.  Since ∆H > 0 (heat is liberated upon freezing) and ∆α > 0 
(freezing water expands), the slope dp/dT < 0 as shown in Figs. 5.1 and 5.2. 
 
5.3.4 Liquid/vapor equilibrium - the Clausius-Clapeyron Eq. 
 
 In this case ∆α = αliquid - αvapor ≅ -α vapor.  Then, from the equation of state, we can write  
 
 -αv = -RvT/es (es is used in place of p since we are concerned with equilibrium at saturation) 
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Then  
 

 des/dT = -∆Hvap/(T∆α) = ∆Hvapes/(RvT2) 

 

or  dlnes/dT = Lvl/(RvT2).         (5.7) 

 
Recall that Lvl is not a constant, but varies by ~10% over the temperature interval (0, 100 °C), and by 

about 6% over the interval (-30, 30 °C).  (See Table 5.1)  However, to a first approximation, we can 
assume that Lvl  is constant and integrate Eq. (5.7): 
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where To = 273.1 K and eso = 6.11 mb (from lab measurements).   
 
Rewriting this expression and grouping the constants into new constants A and B yields the simple, 
approximate expression: 
 

 es(T) = Ae-B/T,          (5.8) 

 

where A = 2.53 x 108 kPa and B = 5.42 x 103 K. 
 
A more elegant derivation of the Clausius-Clapeyron equation given in Rogers and Yau, 
pp 12-16.  We will also consider this.   
 
In order to get a more accurate representation of es(T), the temperature dependence can be incorporated 
using a linear correction term involving T in an expression for Lvl, and then substitute in Eq (4.10) and 
integrated. 
 
A more accurate form is (see HW problem) 
 
 log10 es = -2937.4/T - 4.9283log10T + 23.5471   (es in mb and T in K) 
 
Bolton (1980) determined the following empirical relation by fitting a function to tabular values of es(T).  
This form is accurate to within 0.1% over the temperature interval (-35 C, +35 C): 
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Table 5.1.  Saturation vapor pressures over water and ice, and latent heats of condensation and sublimation. 
 

T (°C) es (Pa) ei (Pa) Llv (103 J kg-1) Liv (103 J kg-1) 
-40 19.05 12.85 2603 2839 
-35 31.54 22.36   
-30 51.06 38.02 2575 2839 
-25 80.90 63.30   
-20 125.63 103.28 2549 2838 
-15 191.44 165.32   
-10 286.57 259.92 2525 2837 
-5 421.84 401.78   
0 611.21 611.15 2501 2834 
5 872.47  2489  
10 1227.94  2477  
15 1705.32  2466  
20 2338.54  2453  
25 3168.74  2442  
30 4245.20  2430  
35 5626.45  2418  
40 7381.27  2406  
     

 
 
5.4 Moisture parameters   
 
Common variables used for measurement of moisture: 

a) mixing ratio (rv) 

          rv= mv/md = εe / [p-e] ≅ εe/p        (5.10) 

b) specific humidity (qv) 

 qv =  mv/(mv+md) = rv/r = rv / (rd+rv)  

      = εe / [p-(1-ε)e]     (using the equation of state for rv and rd) 

                 ≅ εe/p 
 Thus, qv ≅ rv. 

c) vapor pressure (e)  (connection to Clausius-Clapeyron Eq.) -- Don’t confuse e with es 

d) relative humidity (f) 
 f = rv / rvs(T,p) ≈ e/es(T) = rvs(Td)/rvs(T)       (5.11) 

 Be careful - f can be expressed in % or in fraction 

e) virtual temperature (Tv) (defined previously; not really used to measure water vapor) 

 Tv ≅ T(1+0.608rv) 

f) dewpoint temperature (Td):  temperature at which saturation occurs; defined as a process in Chap. 6. 

 

Which of these are absolute and relative?   

Which are conserved for a substaturated parcel that is not experiencing mixing with its surroundings? 
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Problems 
 
1. Prove that pure water vapor can reach saturation in the following processes: 

a) isothermal compression 
b) adiabatic expansion 

 
2. Using the relation 
 

L(T) = L0 – (c-cpv)(T-T0) 
 

 for the dependence of the latent heat of vaporization on temperature, integrate Eq. (5.7) for obtaining the 
expression for es(T).  This result is sometimes call the Magnus equation or Kiefer’s formula.  Over the range –30 
°C ≤ T ≤ +30 °C, compare es(T) from this equation with the simpler approximation (5.8), with Bolton’s 
empirical formula   

 
where es is in mb and T is in °C.  Also compare with data in Table 5.1. 

 
 
3. A sample of moist air has a temperature of –5 °C, a pressure of 80 kPa, and a relative humidity of 65%.  Solve 

for the following properties of the sample by calculations, using approximations only when necessary.  Confirm 
your answers with a skew-T diagram wherever possible. 

 
a) Potential temperature 
b) Mixing ratio 
c) Dew point 
d) Saturation point temperature (temp. of the LCL) 
e) Equivalent potential temperature 
f) Virtual temperature 
g) Density 

 
 
4. Determine the water vapor pressure and mixing ratio for a dew point temperature of 90 °F and a pressure of 1 

atm.  (1 atm = 1013 mb).  (°F = 9/5 °C + 32) 
 
5. From the equation  log10 es = -2937.4/T - 4.9283 log10 T + 23.5518 for the saturation vapor pressure (in mb), 

derive the latent heat of vaporization at 10 °C. 
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