4. THE SECOND LAW OF THERMODYNAMICSAND RELATED ITEMS
4.1 General statement of the law

Recall that the First Law is an empirical statetmegarding the conservation of energy.
The Second Law is concerned with the maximum foactif heat that can be converted into
useful work. The second law may be stated in séfferent ways, such as :

a) Thermal energy will not spontaneously flow fromader to a warmer object.
b) Theentropy(defined below) of the universe is constantly imsiag.

Thus, the second law is not a conservation prieciplit rather is a law defining the direction of

flow of energy. In the following we will see themtropy and energy are closely relafet e:
The second law is a statenent of nmcroscopic probability. Can refer to
el ementary kinetic theory.]

4.2 Entropy

Entropy is astate function defined by (per unit mass)

ds=—" |rev . 4.1a

The second law defines entropy as a state funatioihpermits the following statements:
a) For a_reversibl@rocess the entropy of the universe remains consta

b) For an.irreversibl@rocess the entropy of the universe will increase

Thus, a more general definition of entropy is

ds > % (4.1b)*

Note that the Second Law does not address anyspegfically about the entropy of tlsgstem,
but only that of theiniverse (system + surroundings).

A system process is defined as reversible if assystafter having experienced several
transformations, can be returned to its originalage without alteration of the system itself or
the system's surroundingsA reversible transformation will take place wresystem moves by
infinitesimal amounts, and infinitesimally slowlyetween equilibrium states such that the
direction of the process can be reversed at arg. tiRemember that in a reversible process the
deviation from equilibrium is infinitesimal. [Reféo the work of expansion problem considered
previously in Section 3.6.] In a reversible pregehe entropy of the universe (i.e., the system
plus surroundings) remains constant.

In principle, a thermodynamic process can be diassinto one of three categories: (a)
natural, (b) reversible, and (c) impossible. Naltprocesses are more or less irreversible. For
example, the following general processes are irsgvie:
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» friction - associated heating warms the surrounsliffigctional heating in a hurricane)

* unrestrained expansion (expansion of a gas incaum) - again the surroundings are
modified

* heat conduction in the presence of a temperatadiant (surface heating/cooling)

» chemical reactions (e.g., the combination of H @nd the production of i; many others)

* turbulent mixing and molecular diffusion of pollata and aerosols

» freezing of supercooled water

* precipitation formation - removes water and heatfian air parcel

* mixing between a cloud and the subsaturated atneosph

Consider the p-V diagram below, on which bothhsoms (lines of constant
temperature) and adiabats (lines of constant patéatnperature) are drawn. The isotherms are
distinguished by differences in temperature andattiebats by differences in potential
temperature. There is another way of distinguighiifferences between adiabats. In passing
from one of the adiabat8,(or 8,) to another along an isotherm (this is actuallg teg of the
Carnot cycle, see also the appendix), heat is bbdaur rejected, where the amount of egd,
depends on the temperature of the isotherm. Ibeashown that the ratitg./T is the same no
matter what isotherm is chosen in passing fromazhabat to another. Therefore, the ratio
Ag/T is a measure of the difference between the atBaband this is also the difference in
entropy s. [This suggests tleaand s are related, which is shown in the followjing

Pressure —»

Volume —»

Figure4.1l. Isotherms (dashed) and adiabats (solid) on adagram. The line segments A-B-C-D-A define arfoa
cycle on this diagram. Adapted from Fig. 2.15 dadllAte and Hobbs (1977).

Using the definition of entropy from Eqg. (4.1)e first law can be expressed as
dg=Tds=du + pul

When a substance passes from state 1 to state hamge in entropy is found by integrating
(4.2):
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qurev
po=sms =[5

It is desirable to express entropy in terms of nean@monly-used atmospheric variables.
To do this, we combine the equation of state

pa = RT
with the first law in the form
dg = cde -adp.

We can then write
—=c,—-R— 4.2)
p

Taking the log differential of Poison's Eq. (potahtemperature) we can write

c@—cﬂ—R% 4.3
P g P T D (4.3)

Since (4.2) and (4.3) have identical right-hanasi(RHS), they can be equated:

ors = g In6 + const

From this we can see that transformations in whitnopy is constant are also processes in
which the potential temperature of an air parcebisstant. Such processes are cabeatropic
(adiabatic) processes. Analyses using the vartabke similarly calledsentropic analyses, and
lines of constan® are termedsentropes. An example of an isentropic analysis, and a
corresponding temperature analysis, is shown in4Ry
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a) Temperature analysis

-56°C 40 -————_ ~68%C

- ~ 100

250
—
- o
E =
e L
= >

<
k=2 A
o o
I 500 QO
b) Isentropic analysis

o o 9 RS 40 3 —100

250
—_
— o]
S S
v N—r

N—r

= L
e >
2 w0
2 o
500 O

1000

OoM CB NA AT CH
Horizontal distance (sounding location)

Fig 4.2. Analysis of (a) temperature and (b) ptiéétemperature along a vertical section betweerafa,
NE and Charleston, SC, through the core of ajjeast. In each panel, wind speed in“hissindicated by
the dashed contours. Taken from Wallace and H{®&7).
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4.3 A generalized statement of the second law

To this point we have considered only reversiloEpsses in which a system moves
through a series of equilibrium states. Howevitnaural processes are irreversible since they
move a system from a nonequilibrium state towacdradition of equilibrium. The second law
can be stated more generally in terms of the folgwpostulates:

1. There exists a function of state for a system dadiatropy s.

2. s may change as the system: (a) comes into thewmudlbrium with its environment or (b)
undergoes internal changes within the body. Tted emtropy change ds can be written as
the sum of external (e) and internal (i) changes

ds = (dsy + (ds)
3. The external change (@s given by (dg = dg/T.

4. For reversible changes, (fls)0, and for irreversible changes, {ds0. Thus,

ds = dg/T for reversible changes
ds > dg/T for irreversible changes.
Combining these two gives the generalized fornmheffirst law as
Tds> du + pab, (4.4)

where the equality refers to reversible (equilibrjyprocesses and the inequality to irreversible
(spontaneous) transformations.

[Note: For those interested, a sinple treatnment of thernmodynamnic probability
and entropy is provided in Fleagle and Businger (1980), pp 54-59.]

4.4 Deter mination of entropy changes. some examples

The change in entropy for any process in goingfem initial to a final state is measured
by dg/T, using Eqg. (4.4) or an equivalent. Consttle following processes.

4.4.1 Someidealized entropy change processes

[Note: in the exanples below we are beginning with the first law dgq = du + pda
or dq = cpdT - adp]

a) isothermal expansion of an ideal gas
For an isothermal process du = 0 and the workpéesion (determined previously) is

[pda = NRTIN@/ay).

Thus, As = nRIn@/a;).
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[Proof: Sincen = RT/p, dx = (R/p)dT - (RT/B)dp. Then -pd (=dw) = -RdT + RTdInp]

If the final specific volume, is greater than the initial; then the entropy change is positive,
while for a compression it is negative.

b) adiabatic expansion of an ideal gas

For a reversible adiabatic expansion dg=0 andth@y change is ds=0. This is the isentropic
process defined previously.

c) heating of an ideal gas at constant volume

For a reversible process, ana=d). Then
ds = dgey/T = 6, dT/T = gdInT.

d) heating of an ideal gas at constant pressure

For a reversible process
ds = dgey/T = cpdT/T = gydInT.

e) entropy changes during phase transitions

For a phase transition carried out reversibly, aech

As :Ahtransitior(Ttransition
[Recall thatAh = L = gAT for a phase change, assumed to occur at corssgure.]

442 Example: Theentropy changein anirreversible process

Consider the isothermal expansion of an ideal gdsam initial value of pressure = 1 atm,
temperature = 273.1 K, and volume = 22.412 litersrpole. Let this system expand
isothermally against a constant external pressiudesoatm. The final volume is 44.824 liters

(L) and the work done is,p(V,-V;) = 0.5(22.412) = 11.206 L atm = 271.04 cal = 13133 cal =
4.187 J). This is the heat that must be suppheh fan external reservoir to maintain isothermal
conditions. Since this process is irreversible,ghtropy change of the system is dofT.

Rather, we must find a reversible process fromirttial to final state. In this case we refer to
Example (a) above in whiddge, = RTIn 2 = 1573 J. The change in entropy of theersible
process is thuAg/T = 1573 J/273.1 K =5.76 JKK

443 The phase change entropy

At 273.15 K (0°C) the entropy of melting of water ig/T; = 3.34 x 16 J kg / 273.1 K = 1223
J K1 kg1, while at 373.1 K the entropy of vaporization |§T =2.25 x 16 J kg'/ 373.1 K =

6031 J K! kgl. This entropy change is due primarily to two efée (1) the entropy associated
with the intermolecular energy and (2) configuraéibentropy.
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Furt her explanation: For the conversion of ice into water there iddithange in the
intermolecular entropy term and an increase inigandition entropy in transforming to a slightly
less ordered system. However, in evaporation tisesdarge change in intermolecular entropy
(the molecules in the gas are spaced far apara@ngubject to little interaction compared to
molecules in the liquid phase) as well as a latgage in configurational entropy in going from

a somewhat ordered liquid to a nearly completedpdiered gas.
[Can include the statistical treatment of entropy here.]

Example: Calculate the change in entropy when 5 g of natt®°C are raised to 100
°C and then converted to steam at that temperaifieewill assume the latent heat of
vaporization is 2.253x20) kg! at 100°C. (Note that we will use the extensive formsapital
letters — since mass is involved.)

Step 1: Compute the increase in entropy resuftimg increasing the water temperature from 0O
to 100°C:

373

AS, = S373=Sy73 = _[erev/T

273

Here, dQ,, = m(dq.,) = mq,dT where m is mass ang & the specific heat of water. It we

assume g to be constant at 4.18x30 kg! K-1 we have
373
DS, = Sy73 = Sy73= (0.005kg)(418x10° I kg™ K ™) [dT/T
273
=20.91In(373/273) = 6.58 3K

Step 2: Compute the change in entropy from comwersf 5 g of water to steam, which involves
a latent heat term. This is

AS, = mL,/T = (.005 kg)(2.253x1DJ kg')/373 K
=302 J K.

The sum of these components gives the total inetk8s
AS =AS, +AS, =6.58 + 30.2 =36.78 JK

45 The free energy functions

The first law is a conservation statement, whike gbcond law governs the directions of thermal
energy transfer and also permits the determinatiaghe reversibility of a process. It is desirable
to have a function or set of functions which wilsgribe for a system the likelihood of a given
process and the conditions necessary for equitibri®ince there are really only two basic
thermodynamic functions (u and s), we can on ttséshaf convenience define additional
functions that may be based on u 0M8it a minute -- It may not be clear why u and s
are so basic. Think about this.]. These functions can then be used to defineibguin
conditions for processes to be considered later.
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451 Helmholtzfree energy

The Helmholtz free energyg defined as

f=u-Ts.
In differential form, we have
df =du - Tds - sdT (4.5)

Combining this with Eq (4.4) (Tds=du+pd- recall that the equality implies the reversible
condition here) gives

df = -sdT - pdk

If a system is in equilibrium and both T amdire constant, then df = 0. For a system which
undergoes a spontaneous (irreversible) proceshawe

df < -sdT - pdk
and df < 0. Thus, a system at constant T and welfrnis in a stable equilibrium when f attains
a minimum value. For this reason, the Helmhokefenergy is sometimes called the
thermodynamic potential at constant volume.
452 Gibbsfreeenergy
In this case we will derive the Gibbs free enemgyrf the First Law, using the form

dg = du + pd.
Integration between the limits associated with asghchange, we get

L= dg =] du +J px

Assuming p=const and through some simple rearraegewe can obtain
QZd
L :TI % =T(s,—s) =u, —u, + p(a, -a,)
o

where the subscripts 1 and 2 denote the two phd®estranging to combine like subscripts
yields the following equality regarding the enelgptween the two phases:

W+pa-Ts=hL+pi-TS

Based on the above, the Gibbs free ené&rglefined as (per unit mass)

g=u-Ts+p [=f+ pa]
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In differential form,

dg =du - Tds - sdT + pd+ adp. (4.6)
Again, we can use (4.4) to obtain

dg = -sdT +adp.

In this case, if T and p are constant, for a badgquilibrium we have dg = 0. For an irreversible
process,

dg < -sdT +adp.
Thus, dg < 0 in an irreversible, isobaric, isothartransformation. Gibbs free energy is also
called the thermodynamic potential at constantqanes We will find that g is very useful for
phase changes which occur at constant T (isothgamdlp (isobaric).
453 Thefreeenergy functions and total work

At this point it is instructive to relate g antbfthe external work that a system can
perform under various conditions. So far we hasimed that the only work term is that of
expansion, pd. There are other forms of work that we will catesi however. [Recall the

strange>.e term in Eq. (3.3) at the top of page 3, ChapteAG:= q +Zgj]
For example, the creation of a surface in the raiida (formation) of water droplets and ice

crystals will be of interest to us. In this moengral form, the First Law can be written as
dqg = du + dwy,,
and for a reversible transformation

Tds = du + dyy, (4.7)

where the total work is dyy. If we combine the above with (4.5) and assumisaiparic
condition, we find

dw,, = -df - sdT.
Furthermore, for an isothermal process,
dw,, = -df.

Thus, the total external work done by a body ieersible, isothermal, isobaric process is equal
to the decrease in Helmholtz free energy of theybod

Now, if da (this variablés a and notr) is the external work done by a unit mass of a
body over and above any work of expansiorofpde.,

da= thot - pdot
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then we can use (4.6), (4.7) and the above to write
da = -dg -sdT wadp.

For an isothermal, isobaric process,
da = -dg.

The thermodynamic functions f and g have imporggplications in problems involving
phase changes in the atmosphere. In particukesetfunctions will be utilized later in this
course when we consider the formation (nucleatidnyater droplets from the vapor phase. [In
other words, don’t forget about g!]

Problems

1. One gram of water is heated from 0 to°2) and then evaporated at const T. Compute the
following (also assuming isobaric conditions):
a) the change in internal energy
b) the change in enthalpy
c) the change in entropy

2. Calculate the change in entropy of 2 g of ice a@tliyiat -10°C which is converted to steam at
100°C due to heating. [ans: 17.3 K

3. A 200 g sample of dry air is heated isobaricallg. entropy increases by 19.2 3 kand the
work done by expansion is 1.61 x*10 Solve for the final temerature of the air.

4. We are so accustomed to thinking of energy as bebngerved and entropy as increasing
that we may lose sight of the fact that the corvéspossible. In what kind of general
process is the entropy of a system conserved iritérnal energy is not? This is a simple
and straightforward question, not a trick. [Talexm Bohren and Albrecht.]

5. (a) Sketch the Carnot cycle on a skew-T diagrankénaacopy of your large diagram, or find
a skew-T on the web). (b) Prove that for any reiée heat engine, the work done in one
cycle is proportional to the area enclosed by glidecwhen represented on a grapt® of
against p.

6. Arefreigerator is the reverse of a heat enginerkfis doneon, rather tharby, the working
fluid in a refrigerator. Devise an energy efficgrior a refrigerator. Keep in mind that such
an efficiency (call the coefficient of performanég}he ratio of what is desired to what this
costs (in energy). After you have obtained thigincy for any refrigerator, determine
what it is for an ideaCarnot refrigerator (one that operates on a Carnot cycle). Estiniege t
Carnot coefficient of performance for a typicalrigérator.

10



ATS 541 Chapter 4 09/18109

Appendix: The Carnot Cycle: Highlights
Note: Refer to Petty, Section 5.5.2 (pp. 143-149)

The Carnot cycle may be one the the most popukamples used in the study of (general)
Thermodynamics. Tsonis discusses it in dispropoatie detail on pp. 49-56, and the student is
encouraged to read this. The Carnot cycle illtssraeveral aspects of the Second Law, and also
defines thermodynamic efficiency.

The Carnot cycle is a sequence of 4 component psese two being isothermal, and the other
two being adiabatic. These component cycles deelated as follows:

a. reversible isothermal expansionat T T

b. reversible adiabatic compressiorbat 6,

c. reversible isothermal compression T= T

d. reversible adiabatic expansiérr 6,

Fig. A.1 illustrates these paths as they would appe a skew-T, In p diagram. (Tsnonis uses a
p-V diagram.)

The guantitative measures of work, internal enettgnge, and heat input along each leg are
detailed in Tsnonis, pp. 50-52. Take some timextamine these.

From the Carnot cycle, the thermodynamic efficieoay be defined as

E =1-

thermo

_2
Tl
Efficiency is zero when = T,, and is maximized when, K< T;.

Tsnonis mentions two postulates that originate ftbis, and these are alternate statements of the
Second Law:
1) Kelvin's postulate: It is impossible for a thernasigine to accomplish work at only one
temperature (p. 52, Tsnois).
2) Clausius’s postulate: A transformation that perrhgat transfer from a cold body to a
hot body is impossible (p. 53, Tsonis). Recalt the First Law does not address the
possibility of transformations; it only quantifisem, even if they are impossible.
(Think of the First Law as the smart person whor@asommon sense, and the Second
Law as the wise person who has abundant commoe 3ens

Question for discussion: How does the Carnot Chieistrate the way in which a heat pump (or
refrigerator) works.

11
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Figure A.1. lllustration of the Carnot Cycle asvibuld appear in graphical form on the skew-T,
In p diagram. The process is cyclic, begins abysol, and then proceeds through points 2, 3, 4,
and back to 1.

12



