
4.  THE SECOND LAW OF THERMODYNAMICS AND RELATED ITEMS 
 
4.1   General statement of the law 
 
 Recall that the First Law is an empirical statement regarding the conservation of energy.  
The Second Law is concerned with the maximum fraction of heat that can be converted into 
useful work.  The second law may be stated in several different ways, such as :  

a) Thermal energy will not spontaneously flow from a colder to a warmer object. 

b) The entropy (defined below) of the universe is constantly increasing.   

Thus, the second law is not a conservation principle, but rather is a law defining the direction of 
flow of energy.  In the following we will see that entropy and energy are closely related  [Note:  
The second law is a statement of macroscopic probability.  Can refer to 
elementary kinetic theory.] 

 
4.2   Entropy 
 
 Entropy is a state function defined by (per unit mass) 
 

           
T

dq
ds rev≡ .         (4.1a) 

 
The second law defines entropy as a state function and permits the following statements: 

a) For a reversible process the entropy of the universe remains constant. 

b) For an irreversible process the entropy of the universe will increase. 

Thus, a more general definition of entropy is 

 
T

dq
ds ≥          (4.1b)* 

Note that the Second Law does not address anything specifically about the entropy of the system, 
but only that of the universe (system + surroundings). 

 
 A system process is defined as reversible if a system, after having experienced several 
transformations, can be returned to its original state without alteration of the system itself or 
the system's surroundings.  A reversible transformation will take place when a system moves by 
infinitesimal amounts, and infinitesimally slowly, between equilibrium states such that the 
direction of the process can be reversed at any time.  Remember that in a reversible process the 
deviation from equilibrium is infinitesimal.  [Refer to the work of expansion problem considered 
previously in Section 3.6.]   In a reversible process, the entropy of the universe (i.e., the system 
plus surroundings) remains constant. 
 

In principle, a thermodynamic process can be classified into one of three categories:  (a) 
natural, (b) reversible, and (c) impossible.  Natural processes are more or less irreversible.  For 
example, the following general processes are irreversible: 
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• friction - associated heating warms the surroundings (frictional heating in a hurricane) 
• unrestrained expansion (expansion of a gas into a vacuum) - again the surroundings are 

modified 
• heat conduction in the presence of a temperature gradient (surface heating/cooling) 
• chemical reactions (e.g., the combination of H and O in the production of H20; many others) 
• turbulent mixing and molecular diffusion of pollutants and aerosols 
• freezing of supercooled water 
• precipitation formation - removes water and heat from an air parcel  
• mixing between a cloud and the subsaturated atmosphere 
 
 Consider the p-V diagram below, on which both isotherms (lines of constant 
temperature) and adiabats (lines of constant potential temperature) are drawn.   The isotherms are 
distinguished by differences in temperature and the adiabats by differences in potential 
temperature.  There is another way of distinguishing differences between adiabats.  In passing 
from one of the adiabats (θ1 or θ2) to another along an isotherm (this is actually one leg of the 
Carnot cycle, see also the appendix), heat is absorbed or rejected, where the amount of heat ∆qrev 
depends on the temperature of the isotherm.  It can be shown that the ratio ∆qrev/T is the same no 
matter what isotherm is chosen in passing from one adiabat to another.  Therefore, the ratio 
∆qrev/T is a measure of the difference between the adiabats – and this is also the difference in 
entropy s.  [This suggests that θ and s are related, which is shown in the following.] 
 

 
Figure 4.1.  Isotherms (dashed) and adiabats (solid) on a p-V diagram.   The line segments A-B-C-D-A define a Carnot 
cycle on this diagram.  Adapted from Fig. 2.15 of Wallace and Hobbs (1977). 
 
     Using the definition of entropy from Eq. (4.1), the first law can be expressed as  
 
  dq = Tds = du + pdα. 
 
When a substance passes from state 1 to state 2, the change in entropy is found by integrating 
(4.1): 
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sss rev  

It is desirable to express entropy in terms of more commonly-used atmospheric variables.  
To do this, we combine the equation of state 
 
  pα = RT 
 
with the first law in the form 
 
  dq = cpdT - αdp. 

 
We can then write  
 

  
dq

T
c

dT

T
R

dp

pp= −        (4.2) 

 
Taking the log differential of Poison's Eq. (potential temperature) we can write 
 

  c
d

c
dT

T
R

dp

pp p

θ
θ

= −        (4.3) 

 
Since (4.2) and (4.3) have identical right-hand sides (RHS), they can be equated: 
 

  
dq

T
c

d
p=

θ
θ

 

 
Thus the entropy function can be expressed in terms of potential temperature as 
 

  ds c
d

p=
θ

θ
 

 
or s = cp lnθ + const. 
 
From this we can see that transformations in which entropy is constant are also processes in 
which the potential temperature of an air parcel is constant.  Such processes are called isentropic 
(adiabatic) processes.  Analyses using the variable θ are similarly called isentropic analyses, and 
lines of constant θ are termed isentropes.  An example of an isentropic analysis, and a 
corresponding temperature analysis, is shown in Fig. 4.2. 
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Fig 4.2.  Analysis of (a) temperature and (b) potential temperature along a vertical section between Omaha, 
NE and Charleston, SC, through the core of a jet stream.  In each panel, wind speed in m s-1 is indicated by 
the dashed contours.  Taken from Wallace and Hobbs (1977).
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4.3   A generalized statement of the second law 
 
 To this point we have considered only reversible processes in which a system moves 
through a series of equilibrium states.  However, all natural processes are irreversible since they 
move a system from a nonequilibrium state toward a condition of equilibrium.  The second law 
can be stated more generally in terms of the following postulates: 
 
1. There exists a function of state for a system called entropy s. 
 
2. s may change as the system: (a) comes into thermal equilibrium with its environment or (b) 

undergoes internal changes within the body.  The total entropy change ds can be written as 
the sum of external (e) and internal (i) changes 

 
ds = (ds)e + (ds)i  

 
3. The external change (ds)e is given by (ds)e = dq/T. 

 
4. For reversible changes,  (ds)i = 0, and for irreversible changes, (ds)i > 0.  Thus,  

 
ds = dq/T  for reversible changes 

 
ds > dq/T  for irreversible changes. 

 
Combining these two gives the generalized form of the first law as 
 
  Tds ≥ du + pdα,        (4.4)* 
 
where the equality refers to reversible (equilibrium) processes and the inequality to irreversible 
(spontaneous) transformations.  
 
[Note:  For those interested, a simple treatment of thermodynamic probability 
and entropy is provided in Fleagle and Businger (1980), pp 54-59.] 

 
4.4   Determination of entropy changes:  some examples 
 
 The change in entropy for any process in going from an initial to a final state is measured 
by dq/T, using Eq. (4.4) or an equivalent.  Consider the following processes. 
 
4.4.1 Some idealized entropy change processes 
 
[Note: in the examples below we are beginning with the first law dq = du + pdα  
or dq = cpdT - αdp] 
 
a)  isothermal expansion of an ideal gas 
 For an isothermal process du = 0 and the work of expansion (determined previously) is 
  

∫pdα = nRTln(α2/α1). 
 
Thus, ∆s = nRln(α2/α1). 
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[Proof:  Since α = RT/p, dα = (R/p)dT - (RT/p2)dp.  Then -pdα (=dw) = -RdT + RTdlnp] 
 
If the final specific volume α2 is greater than the initial α1 then the entropy change is positive, 
while for a compression it is negative. 
 
b) adiabatic expansion of an ideal gas 
  
For a reversible adiabatic expansion dq=0 and the entropy change is ds=0.  This is the isentropic 
process defined previously. 
 
c) heating of an ideal gas at constant volume 
  
For a reversible process, and dα=0.  Then 
 
 ds = dqrev/T = cvdT/T = cvdlnT. 

 
d) heating of an ideal gas at constant pressure 
  
For a reversible process 
 
 ds = dqrev/T = cpdT/T = cpdlnT. 

 
e) entropy changes during phase transitions 
  
For a phase transition carried out reversibly, we have 
 ∆s = ∆htransition/Ttransition. 

[Recall that ∆h = L = cp∆T for a phase change, assumed to occur at constant pressure.] 
____________________________________________________________ 
 
4.4.2 Example:  The entropy change in an irreversible process 
  
Consider the isothermal expansion of an ideal gas with an initial value of pressure = 1 atm,  
temperature = 273.1 K, and volume = 22.412 liters per mole.  Let this system expand 
isothermally against a constant external pressure of 0.5 atm.  The final volume is 44.824 liters 
(L) and the work done is pext(V2-V1) = 0.5(22.412) = 11.206 L atm = 271.04 cal = 1135 J (1 cal =  
4.187 J).  This is the heat that must be supplied from an external reservoir to maintain isothermal 
conditions.  Since this process is irreversible, the entropy change of the system is not dq/T.  
Rather, we must find a reversible process from the initial to final state.  In this case we refer to 
Example (a) above in which ∫dqrev = RTln 2 = 1573 J.  The change in entropy of the reversible 
process is thus ∆q/T = 1573 J / 273.1 K = 5.76 J K-1. 
 
4.4.3 The phase change entropy 
  
At 273.15 K (0 °C) the entropy of melting of water is Lil/Tf = 3.34 x 105 J kg-1 / 273.1 K = 1223 

J K-1 kg-1, while at 373.1 K the entropy of vaporization is Llv/T = 2.25 x 106 J kg-1 / 373.1 K = 

6031 J K-1 kg-1.  This entropy change is due primarily to two effects: (1) the entropy associated 
with the intermolecular energy and (2) configurational entropy.   
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Further explanation:   For the conversion of ice into water there is little change in the 
intermolecular entropy term and an increase in configuration entropy in transforming to a slightly 
less ordered system.  However, in evaporation there is a large change in intermolecular entropy 
(the molecules in the gas are spaced far apart and are subject to little interaction compared to 
molecules in the liquid phase) as well as a large change in configurational entropy in going from 
a somewhat ordered liquid to a nearly completely disordered gas.   
[Can include the statistical treatment of entropy here.] 

 
 Example:   Calculate the change in entropy when 5 g of water at 0 °C are raised to 100 
°C and then converted to steam at that temperature.  We will assume the latent heat of 
vaporization is 2.253x106 J kg-1 at 100 °C.   (Note that we will use the extensive forms – capital 
letters – since mass is involved.) 
 
Step 1:  Compute the increase in entropy resulting from increasing the water temperature from 0 
to 100 °C: 
 

∫=−=∆
373

273
2733731 TdQSSS rev  

 
Here, dQrev = m(dqrev) =  mcwdT where m is mass and cw is the specific heat of water.  It we 

assume cw to be constant at 4.18x103 J kg-1 K-1 we have  

∫
−−×=−=∆

373

273

113
2733731 )1018.4)(005.0( TdTKkgJkgSSS  

                    = 20.9 ln(373/273) = 6.58 J K-1 
 
Step 2:  Compute the change in entropy from conversion of 5 g of water to steam, which involves 
a latent heat term.  This is 
 
 ∆S2  = mLvl/T = (.005 kg)(2.253×106 J kg-1)/373 K  

       = 30.2 J K-1. 
 
The sum of these components gives the total increase ∆S 
 
 ∆S = ∆S1 + ∆S2 = 6.58 + 30.2 = 36.78 J K-1. 
 
4.5   The free energy functions 
 
The first law is a conservation statement, while the second law governs the directions of thermal 
energy transfer and also permits the determination of the reversibility of a process.  It is desirable 
to have a function or set of functions which will describe for a system the likelihood of a given 
process and the conditions necessary for equilibrium.  Since there are really only two basic 
thermodynamic functions (u and s), we can on the basis of convenience define additional 
functions that may be based on u or s [Wait a minute -- It may not be clear why u and s 

are so basic.  Think about this.].  These functions can then be used to define equilibrium 
conditions for processes to be considered later. 
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4.5.1 Helmholtz free energy 
 
The Helmholtz free energy is defined as 
 
 f ≡ u - Ts. 
 
In differential form, we have 
 
 df = du - Tds - sdT                                (4.5) 
 
Combining this with Eq (4.4) (Tds=du+pdα -- recall that the equality implies the reversible 
condition here)  gives 
 
 df = -sdT - pdα 
 
If a system is in equilibrium and both T and α are constant, then df = 0.  For a system which 
undergoes a spontaneous (irreversible) process, we have 
 
 df < -sdT - pdα  
 
and df < 0.  Thus, a system at constant T and volume (α) is in a stable equilibrium when f attains 
a minimum value.  For this reason, the Helmholtz free energy is sometimes called the 
thermodynamic potential at constant volume. 
 
4.5.2 Gibbs free energy 
 
In this case we will derive the Gibbs free energy from the First Law, using the form 
 
 dq = du + pdα. 
 
Integration between the limits associated with a phase change, we get 
 

   L ≡ ∫ dq = ∫ du + ∫ pdα  
 
Assuming p=const and through some simple rearrangement we can obtain 

 
where the subscripts 1 and 2 denote the two phases.  Rearranging to combine like subscripts 
yields the following equality regarding the energy between the two phases: 
 
 u1 + pα1 - Ts1 = u2 + pα2 - Ts2 
 
 Based on the above, the Gibbs free energy is defined as (per unit mass) 
 
 g = u - Ts + pα   [= f + pα] 
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In differential form,  
 
 dg = du - Tds - sdT + pdα + αdp.                   (4.6) 
 
Again, we can use (4.4) to obtain 
 
 dg = -sdT + αdp. 
 
In this case, if T and p are constant, for a body in equilibrium we have dg = 0. For an irreversible 
process, 
 
 dg < -sdT + αdp. 
 
Thus, dg < 0 in an irreversible, isobaric, isothermal transformation.  Gibbs free energy is also 
called the thermodynamic potential at constant pressure.  We will find that g is very useful for 
phase changes which occur at constant T (isothermal) and p (isobaric). 
 
4.5.3 The free energy functions and total work 
 
 At this point it is instructive to relate g and f to the external work that a system can 
perform under various conditions.  So far we have assumed that the only work term is that of 
expansion, pdα.  There are other forms of work that we will consider, however.  [Recall the 
strange ∑ei term in Eq. (3.3) at the top of page 3, Chapter 3:  ∆u = q + Σei]   

For example, the creation of a surface in the nucleation (formation) of water droplets and ice 
crystals will be of interest to us.  In this more general form, the First Law can be written as 
 
 dq = du + dwtot, 
 
and for a reversible transformation 
 
 Tds = du + dwtot                                 (4.7) 
 
where the total work is dwtot.  If we combine the above with (4.5) and assume an isobaric 
condition, we find 
 
 dwtot = -df - sdT. 
 
Furthermore, for an isothermal process, 
 
 dwtot = -df. 
 
Thus, the total external work done by a body in a reversible, isothermal, isobaric process is equal 
to the decrease in Helmholtz free energy of the body. 
 
 Now, if da (this variable is a and not α) is the external work done by a unit mass of a 
body over and above any work of expansion (pdα), i.e., 
 
 da ≡ dwtot - pdα , 



ATS 541 Chapter 4 09/15/09 

 

10 

10 

 
then we can use (4.6), (4.7) and the above to write 
 
 da = -dg -sdT + αdp. 
 
For an isothermal, isobaric process,  
 
 da = -dg. 
 
 The thermodynamic functions f and g have important applications in problems involving 
phase changes in the atmosphere.  In particular, these functions will be utilized later in this 
course when we consider the formation (nucleation) of water droplets from the vapor phase.  [In 
other words, don’t forget about g!] 
 
 
Problems 
 
1. One gram of water is heated from 0 to 20 °C, and then evaporated at const T.  Compute the 

following (also assuming isobaric conditions): 
a) the change in internal energy 
b) the change in enthalpy 
c) the change in entropy 

 
2. Calculate the change in entropy of 2 g of ice initially at -10 °C which is converted to steam at 

100 °C due to heating. [ans: 17.3 J K-1] 
 
3. A 200 g sample of dry air is heated isobarically.  Its entropy increases by 19.2 J K-1, and the 

work done by expansion is 1.61 x 103 J.  Solve for the final temerature of the air. 
 
4. We are so accustomed to thinking of energy as being conserved and entropy as increasing 

that we may lose sight of the fact that the converse is possible.  In what kind of general 
process is the entropy of a system conserved but its internal energy is not?  This is a simple 
and straightforward question, not a trick.  [Taken from Bohren and Albrecht.] 

 
5. (a) Sketch the Carnot cycle on a skew-T diagram (make a copy of your large diagram, or find 

a skew-T on the web).  (b) Prove that for any reversible heat engine, the work done in one 
cycle is proportional to the area enclosed by the cycle when represented on a graph of θ 
against pκ. 

 
6. A refreigerator is the reverse of a heat engine:  Work is done on, rather than by, the working 

fluid in a refrigerator.  Devise an energy efficiency for a refrigerator.  Keep in mind that such 
an efficiency (call the coefficient of performance) is the ratio of what is desired to what this 
costs (in energy).  After you have obtained this efficiency for any refrigerator, determine 
what it is for an ideal Carnot refrigerator (one that operates on a Carnot cycle).  Estimate the 
Carnot coefficient of performance for a typical refrigerator. 
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Appendix:  The Carnot Cycle: Highlights 
 
Note: Refer to Petty, Section 5.5.2 (pp. 143-149) 
 
The Carnot cycle may be one the the most popular examples used in the study of (general) 
Thermodynamics.  Tsonis discusses it in disproportionate detail on pp. 49-56, and the student is 
encouraged to read this.  The Carnot cycle illustrates several aspects of the Second Law, and also 
defines thermodynamic efficiency. 
 
The Carnot cycle is a sequence of 4 component processes, two being isothermal, and the other 
two being adiabatic.  These component cycles are interlaced as follows: 

a. reversible isothermal expansion at T = T1  
b. reversible adiabatic compression at θ = θ1 
c. reversible isothermal compression T = T2 
d. reversible adiabatic expansion θ = θ2 
 

Fig. A.1 illustrates these paths as they would appear on a skew-T, ln p diagram.  (Tsnonis uses a 
p-V diagram.) 
 
The quantitative measures of work, internal energy change, and heat input along each leg are 
detailed in Tsnonis, pp. 50-52.  Take some time to examine these. 
 
From the Carnot cycle, the thermodynamic efficiency can be defined as 
 

1

21
T

T
Ethermo −= . 

 
Efficiency is zero when T1 = T2, and is maximized when T2 << T1. 
 
Tsnonis mentions two postulates that originate from this, and these are alternate statements of the 
Second Law: 

1) Kelvin’s postulate: It is impossible for a thermal engine to accomplish work at only one 
temperature (p. 52, Tsnois). 

2) Clausius’s postulate: A transformation that permits heat transfer from a cold body to a 
hot body is impossible (p. 53, Tsonis).  Recall that the First Law does not address the 
possibility of transformations; it only quantifies them, even if they are impossible.  
(Think of the First Law as the smart person who has no common sense, and the Second 
Law as the wise person who has abundant common sense.) 

 
 
Question for discussion:  How does the Carnot Cycle illustrate the way in which a heat pump (or 
refrigerator) works. 
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Figure A.1.  Illustration of the Carnot Cycle as it would appear in graphical form on the skew-T, 
ln p diagram.  The process is cyclic, begins at points 1, and then proceeds through points 2, 3, 4, 
and back to 1. 
 
 
 
 
 
 
 

 


