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3. THE FIRST LAW OF THERMODYNAMICS AND RELATED DEF INITIONS
3.1 General statement of the law

Simply stated, the First Law states that the gnefghe universe is constant. This is an
empirical conservation principle (conservation oémgy) and defines the term "energy." We will also
see that "internal energy" is defined by the Hiest. [As is always the case in atmospheric scigwee
will ignore the Einstein mass-energy equivalendati@n.] Thus, the First Law states the following:

1. Heatis aform of energy.
2. Energy is conserved.

The ways in which energy is transformed is of ies¢tto us. The First Law is the second fundamental
principle in (atmospheric) thermodynamics, andseduextensively. (The first was the equation afes}
One form of the First Law defines the relationsdipong work, internal energy, and heat input. is th
chapter (and in subsequent chapters), we will egpieany applications derived from the First Law and
Equation of State.

3.2 Work of expansion

If a system (parcel) is not in mechanicak§zure) equilibrium with its surroundings, it will
expand or contract. Consider the example of @plsylinder system, in which the cylinder is filledth
a gas. The cylinder undergoes an expansion or i@ssipn as shown below. Also shown in Fig. 34 is
p-V thermodynamic diagram, in which the physicalstof the gas is represented by two thermodynamic
variables: p,V in this case. [We will considerstiand other types of thermodynamic diagrams in more
detail later. Such diagrams will be used extengiwvethis course.] For the example below, eveates
of the substance is represented by a point onréqehg When the gas is in equilibrium at a stabelked
P, its pressure is p and volume is V. If the pistbcross-sectional area A moves outward a distamic
while the pressure remains constant at p, the WarKwork is defined by the differentidiv = fds) is

dW = pAdx = pdV (shaded region of the graph). (3.1)

The total work is found by integrating this diffat@l over the initial and final volumes;\and \4:
j— V2
W = Jvl pdV

On the p-V diagram, the work is equivalent to theaaunder the curve, as shown in Fig. 3.1.
In terms of specific volume (volume per unit ma#isg, incremental work (specific work, w = W/kg) is

dw = pd.
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Example 3.1:

Calculate the work done in compressing (isothermally) 2 kg of dry air to one-tenth its initial volume at 15 °C.

From the definition of work, W = [ pdV.

From the equation of state, p = p4R4T = (M/V)R4T.

Then W = mRyT Jdlnv =mRyTIn(V2/V1)  (remember the process is isothermal)
= (287 J K1 kg 1)(288.15 K)(2 kg)(In 0.1)

=-3.81x10°J.
The negative sign signifies that work is done on the volume (parcel) by the surroundings.
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Figure 3.1. Representation of the state of a autzst in a cylinder on a p-V diagram. Adapted f\dfallace and
Hobbs (1977).

The guantity of work done depends on the path tatkemefore, work is not an exact differential.it If
was, work would depend only on the beginning ardigints (or initial and final conditions. Let us
reconsider Eq. (3.1) above, rewriting it as follojmeting that the displacement dx = vdt, where thés
magnitude of the velocity vector):

dW = pAdx = pAvdt

Since p = F/A (or F = pA), the above equation bee®m

dW = Fvdt or dW/dt = Fv

Now from Newton’s Law, F = ma = mdv/dt. Substihgithis in the above yields

dw dv_d (1 j
—=mv—=—| =mV’
dt dt  dt\2

or
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dW _ dK

dt dt

where the kinetic energy K = Y%fvBeing arinexactdifferential, dW is sometimes denotedd¥
(Tsonis) or DW (notes below).

Example 3.2 (from problem 3.7, p. 22, in Tsonis): An ideal gas of p,V,T undergoes the following
successive changes: (a) It is warmed under constant pressure until its volume doubles. (b) It is warmed
under constant volume until its pressure doubles. (c) It expands isothermally until its pressure returns to
its original pressure p. Calculate in each case the values of p, V, T, and plot the three processes on a
(p,V) diagram.

The three processes are shown in the graph bdlothe first process, the work is
2V
W, = [ pdV = p(2v -V) = pv

In the second process, the work is zero since weldogs not change. In the third process, the \alue
work is similar (i.e., the same relation) to thahd in Example 3.1. As this process proceeds g¢frou
steps a-c, the temperature increases such that3T.

p.vV,T

= const
p p,2V, T4 p. Ve Th

More on thermodynamic work:
http://en.wikipedia.org/wiki/Work_(thermodynamjcs
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3.3 Internal energy and mathematical statement dfirst Law

Consider now a system which undergoes a changedome heat input g per unit mass
(g=Q/m), e.g., a temperature increase from anmtativire or a paddle system to stir a fluid. The
system responds through the work of expansion, wivie will callw (work per unit mass). The excess
energy beyond the work done by the systequg If there is no change in macroscopic or bullekin
and potential energy of the system, then it follékesn conservation of energy that the internal gper
(Au - per unit mass) of the system must increase, i.e.

g-w=Au. (simple expression of the First Law) (3.2)

Although the First Law defines the internal eneiigis (sometimes — as we will later see)
convenient to write it in a more general form imte of the various energy terms. Here, we will sben
various forms of energy which have passed throbgtsystem-surroundings boundary and set this new
sum equal to the change in the system internabgnseimilar to what we did in the previous equation
This expression differentiates thermal and nonrtiaforms of energy:

Au=q+Zg, (amore general form of the First Law) 3.3

where @ is again the net thermal energy (per uagghpassing into the system from the surroundings.
[Thermal energy can be defined as the potentiakametic energies that change as a consequence of a
temperature change.] Note that this last expraséals with the classification of energy passing
through the system boundary -- it does not dedi witlassification of energy within the system.

At this point, it is instructive to define thermehergy. In the atmosphere, thermal energy candecl
heating/cooling by radiation and latent heatingd¢asated with water phase changes).

http://en.wikipedia.org/wiki/First law of thermodymics

According to a series of experiments conducteddoyelin 1843 u depends only on,Ta
relationship known adoule's Law It can also be shown (e.g., this was usetlérderivation of the
equation of state using statistical mechanics,2Gfotes) that for an ideal monatomic gas, the linet
energy of translations is given by

pV = (1/3)Nmu2 = (2/3)Eip = RT,

where N is Avogadro's number (6.023x4%). Thus,

Ekin = (3/2)RT.
Since at constant temperature there are no enbemges in electronic energy, rotational energy, etc
the internal energy of an ideal gas is only a fiomcof T. This is also true for polyatomic ideasgs

such as C@(and air).

For an atmospheric system, the most general fétimeoFirst Law can be expressed in the
differential form as

Dq =du + Dw = du + pb. (3.4)
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[What has happened to the term?]

The operator "d" refers to an exact differentiad 80" to inexact. One property of the inexact
differential (e.g., Dw) is that the closed integsain general nonzero, i.e.,

{Dw # 0. (see also information below)

[seehttp://en.wikipedia.org/wiki/Inexact_differentidls

The first law demands that du be an exact difféaéntone whose value depends only on the inérad
final states, and not on the specific path. Howewem here on, we will ignore this formal disttian
between exact and inexact differentials.

Aside: An exact differential can also be expressgdor a function U = U(x,y) (Tsonis, Section 2.1)

du =Y ax+ Y ay

0x oy

Review: http://sol.sci.uop.edu/~jfalward/thermodynamics/thedynamics.html

fior special
cases becomes

Ideal Gas Law

uses absolute P\ = nRT
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Applicatiuoins of the equation of state, and comioacwith the First Law. Frorhttp://hyperphysics.phy-
astr.gsu.edu/hbase/kinetic/idgcon.html#cl
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3.4 Specific heats

Consider the case where an incremental amourgaifiy is added to a system. The heat added
will increase the temperature of the system bynaremental amoumT, assuming that a change of
phase does not occur. [We will see later that winehange of phase in water occdrsyay remain
constant upon an addition @f.] The ratiodg/dT (or Ag/AT) is defined as the specific heat, whose value
is dependent on how the system changes as heatis iFor atmosphere applications, there are two
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such specific heats, one for a constant specifierwe (or an isochoric process= const), and one for a
constant pressure (or isobaric process, p = const).
Thus,

G = (da/dT )=const
Since specific volume is constant, no work is doAecording to the First Law, Eq. (3.1), dg = dwdan
Gy = (du/dT }=const (now du=c ,dT) (3.5)
This expression can now be used to rewrite (3.4) as
dg = ¢dT + pd. (3.6)*
For the isobaric process, the specific heat is
& = (da/dT )-const (3.7)

In this case, some of the heat added is used iwale of expansion as the system expands agaiest th
constant external pressure of the environment. vahee of & must therefore be greater than that\pf ¢

To show this, we can write (3.6) as
dg = ¢dT + d(m) - adp = dh -adp,
where h, theenthapyis defined as & u + . (Enthalpy is discussed further in the followirggson.)
Since @ = RT from the equation of state (for dry air), girevious equation can be rewritten as
dq = (¢+R)dT -adp = cpdT -adp. (3.8)*

If pressure is constant then dp=0 and, using (&é)note that cexceeds cby the amout R, the gas
constant:

=0t R. (3.9)*
For dry air, the values are:

¢ =717 JKlkgl
% =1005.7 J Kl kgl [=f(T,p); Bolton, 1980]
For ideal monatomic and diatomic (air) gasesait be shown from statistical mechanics theory

that the ratios £c,:R are 5:3:2 and 7:5:2, respectively. (See Ts@i82.) The variation of,avith T
and p is presented in Table 3.1.
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Table 3.1. Dependence of Cpd J K1 kg'l) on T and p. From Iribarne and Godson (1973).

p (mb) T ()
-80 -40 0 40
0 1003.3 1003.7 1004.0 1005.7
300 1004.4 1004.0 1004.4 1006.1
700 1006.5 1005.3 1005.3 1006.5
1000 1009.0 1006.5 1006.1 1007.4

Why is ¢, not constant? See attached tables on ¢

3.5 Enthalpy

p Of air and other materials.

Many idealized and natural processes of intereatrnospheric science occur at constant
pressure. An example is evaporation of rain.eHths added isobarically to a system such thdit that
internal energy u and specific volumechange, then the First Law can be expressed as

Ag = (b-Uy) + p@2- O1) = (L+pay) - (Lt+poy)
=h-h,,

where we have defined the enthalpy h as
h=u+m.

Upon differentiation, we obtain
dh = du + pd + adp,

or, using the First Law [Eq. (3.6)] we can obtain
dg = dh -adp.

Comparing this with (3.8) we can redefine dh as
dh = ¢dT.

This can be integrated to give (assuming h=0 wheh K)
h=¢T.

Yet another form of the First Law is thus

dq = dh -adp = gdT -adp.

We have now developed three useful forms of that faw: (3.6), (3.8) and (3.12).

(3.10)

(3.11)

(3.12)*
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3.6 Example: an isothermal process and reversibili

Consider a fixed mass (m=const) of ideal gas oedfiin a cylinder with a movable piston of
variable weight. The piston weight and its crosstional area determine the internal pressureuriss
that the entire assembly is maintained at T=carsigothermal process). Let the initial presswd ®
atm and the initial volume;\be 1 liter (. Consider the following three processes:

10 A
variable '
weight bt
\
—_ \
E
©
. Psurr = 1 atm o \\\ 3
cylinder S
filled with Sie 2 Sa
gas of mass m ' S~
1 1 Emet
1 4 10
V (liter)

Fig. 3.2. lllustration of three processes (1, 21@) discussted in the text. The “experimentaleappus
is shown on the left, and the thermodynamic praxsease graphed on the right.

Process 1 The weight of the piston is reduced to changeciflinder pressure to 1 atm. The gas
will expand until its pressure is 1 atm, and sipgemRT=const, the final volume;Will be 10! (see
Fig. 3.1). The work of expansion is

W = JpdV = pu(Vi-V) = 1 atm * (10-1) = 9¢-atm,
This is the work done on the surroundings.

Process 2 This will be a two-stage process: (i) Decre@sstantaneously) the cylinder pressure
to 2.5 atm; then the volume will be,4&ince this is similar to Process 1. (ii) Therthar decrease the
pressure (instantaneously) to 1 atm with a volomEd¢. The work is the sum of these two processes:

W=pAV; + pAV,=25atm*3 + 1 atm * 6¢ = 13.5¢ -atm

Process 3 The pressure isontinuouslyreduced such that the pressure of the gas is
infinitesimally greater than that exerted by thet@n at every instant during the process (othermise
expansion would occur). Then we must apply thegrel form of work to get

W = [pdV = mRTIn(\&/V,) = 23.03-atm.
Note that pV=mRT=10-atm = const in this example.

This last process is reversible and representsithemum work A reversible process is one in
which the initial conditions can be reproduced atiesystem goes through at least one change ie.stat
In process 3 above, the initial state of the systambe realized by increasing the pressure canisiy
until the initial volume is attained. Note thaetialue of work for the reversible process dep@mdig
on the initial and final states, not on the pa#or the most paridealizedatmospheric processes are
reversible since parcel pressure is assumed tqumd ® (i.e., differs infinitesimally from) the dment
pressure.
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Wikipedia definition:

In thermodynamicsareversible processorreversible cycléf the process is cyclic, is a process that can be
"reversed” by means dffinitesimal changes in some property of the system withoust doglissipationof energy!
Due to these infinitesimal changes, the systerrigsaduring the whole process. Since it would takerdimite
amount of time for the process to finish, perfectlyersible processes are impossible. Howevengitystem
undergoing the changes responds much faster thampitiied change, the deviation from reversibitigy be

negligible. In a reversible cycle, the system aadiirroundings will be exactly the same after ezcie

An alternative definition of aeversible procesis a process that, after it has taken place, eaeversed and causes
no change in either theystemor its surroundings. In thermodynamic terms, agss "taking place" would refer to
its transition from its initiaktateto its final state.

http://en.wikipedia.org/wiki/Reversible process %%#Bmodynamics%29

3.7 Poisson’s Equations

Introduce the adiabatic process (dg=0)

[refer to the table on const. processes - this shou Id be placed in Chap 1 with the
definitions]

Then use the forms of the first law to derive Poiss on’s Egs.

A special case yields the potential temperature der ivation — Section 3.8.

An adiabatic process is defined as one in whichddd=or an adiabatic process the two advanced forms
of the ' Law, which are related by the equation of staae, lme written

0=dq=c¢dT + pdx  [different forms of the same First Law — take your pick!]
0=dqg =T -adp.

Using the equation of state in the foraelRsT (dry atmosphere), the above relations can be poated
to get the following differential equations:

0 =¢InT + RdIna, [T,a]
0 = gdInT + RdInp, [T.p]
0 = ¢dInp + gdIna, [pa]

where the latter expression was obtained usingdluation of state. Integration yields three foohthe
so-calledPoisson’s Equations

Ta" = const (f.aRy = const)
Tp* = const (T,p"s = const
pa’ = const (Ao, = const)

In the above equations,= Ry/c, andn = ¢/c,.

The last of the three above equations’(p const ) has a form similar to that of the equratif state for
an isothermal atmosphere (in which case the exponenl). These relationships can be expressed in
the more general form

pa” = const,

which are known as polytropic relations. The ex@dm can assume one of four values:
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1. Forn=0, p =const isobaric process
2. Forn=1, p = const isothermal process
3. Forn=n, pa" = const adiabatic process
4. Forn = isochoric process

3.8 Potential temperature and the adiabatic lapseate

We now derive a commonly used thermodynamic stateble utilizing the First Law. [l like to thindf
this as “building” a new variable using our tool&ftfundamental equations, consisting so far of the
Equation of State and the First Law.] Poteneahperatur® is defined as the temperature which an air
parcel attains upon rising (expansion) or sinkicanfpression) adiabatically to a standard referéncs

of pp = 100 kPa (1000 mb). Since we are dealing witadiabatic process, dg=0, and we can write the
(T,p) form of the First Law (3.5) as

dg =0 =¢dT -adp.

Now we incorporate the equation of state=RyT, to eliminaten, and rearrange to get

Next, we integrate over the limits, in which a gardtas a temperature T at pressure p, and thewigémd
a (potential) temperatufeat the reference pressurg glthough not strictly correct, we assume the ¢
and R are constant.

_P]_T - f_p

Rd 8 T Po p
or

c

_p|nI = |n_p )

R, ¢
We take the antilog of both sides and rearranggolate potential temperatur@){(

K
_ - Po _
0= ? (P = 1000 mb) (3.13a)

[This is also called Poisson's equation, sincefatrian of Poisson’s equations.] For dry air R/c, =
287/1005.7 = 0.28 2/7 for a diatomic gas — from kinetic theory] . This value changes
somewhat for moist air because baojtaed R (R) are affected by water vapor (more so than by, B®)
we shall see in the Bolton (1980) paper. Potetdiaperature has the property of betogservedor
unsaturated conditions (i.e., no condensation aperation), assuming that the process is adiafiagic
no mixing or radiational heating/cooling of the @alj. For a moist atmosphere, the expomeintEq.
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(3.13) is multiplied by a correction factor invalg the water vapor mixing ratig, and@ is expressed as
(see Bolton 1980, eq. 7)

K (1-028r,)
9= T(&j (3.13b)*
p

where t is the water vapor mixing ratio expressed in kg &gdk = Ry/C, = 0.286. [The student is

advised to determine how much 0 is adjusted from the dry air value for a very mois t
atmosphere in which r v=20gkg 1]
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Next, we will derive an associated quantity, thg alliabatic lapse rate, which is used to evaluate
static stability. The term "lapse rate" referatmte of temperature change with height (or vairtic
temperature gradient), i.@T/0z. [Aside: It is important to differentiate thest stability of the
atmosphere, as given the the vertical gradiergroperaturedT/dz, from the Lagrangian temperature
change that results when a parcel moves adiabicethe vertical direction. The parcel change of
temperature would be dT/dt = (dT/dz)(dz/dt) = w@#)/] Our starting point is once again the Firati
(3.5) with dg = 0 since we are again consideringdiabatic process.

C,dT -adp = 0.

For a hydrostatic atmosphere (hydrostatic implesertical acceleration, and will be defined markyf
later) the vertical pressure gradient is

dp/dz =dp/oz = pg = -ghi.
Solving the above fam and substituting into the First Law, we obtain

C,dT +gdz =0.
Thus, the value of the dry adiabatic lapse rBigié

(dT/dz) = -g/G, = Ty =-9.75 K knl. (3.14)
Again, one should be aware that this value chasligistly for a moist atmosphere (one with water
vapor), since the addition of water vapor effedfiwgelds a modified value of the specific heatanst
pressure:

Com = Gpe(1+0.887y),
where g is in units of kg kg (Bolton, 1980).

Specifically, for moist air,

Mm=Tq4/(1+0.887) =Id (1-0.887y).



09/30/08 13

3.9 Heat capacities of moist air; effects on cotats

When we assume that the atmosphere consists of vagier in addition to dry air, we have seen
that the exponent of Poisson's equatior R/c,) requires adjustment. The water vapor molecuée is
triatomic and nonlinear molecule, whose position lba described by 3 translational and 3 rotational
coordinates. Dry air is very closely approxima&sda diatomic molecule. The specific heats foewat
vapor are therefore quite different from that of dir:

Cwv = 1463 J K kg*
Cup = 1952 J K kg™,
where the w subscript designates the water phasé€disson's eq. (3.10a) the exponegitRs adjusted

using the correction term (&,)(1-0.28y) (Bolton 1980), where the water vapor mixing ratics
expressed in kg Kg Also the "constants" fand ¢ can be corrected for moist air as follows:

Com = Goa(1+0.887y),
Cvm = Ga(1+0.97),
R = Ry(1+0.608y).

http://sol.sci.uop.edu/~jfalward/thermodynamicsfthedynamics.html

3.10 Diabatic processes, Latent Heats and Kircho#'equation

For a diabatic process, there is a source of lggagmdgz 0. Two examples of diabatic
heating/cooling are absorption/emission of radmgtand the diabatic heating/cooling associated with
water phase changes: condensation (evaporatreeyifig (melting) and deposition
(sublimation).

When we consider energy exchange processes fondls atmosphere, we find instances where
heat supplied to a parcel occurs without a cornedipg change in temperature. Under such conditions
the water substance is changing phase, and thgelamternal energy is associated with a change i
the molecular configuration of the water molecule, a change of phase. We thus refer to threle su
latent heating terms which are shown in Fig. 318Wwe

The notation on the latent heating terms is sbahthe two subscripts define the change in
phase of the water substance. For examplés the latent of condensation with the subscript v
denoting a change in phase from vapor (v) to liq)id Thus, condensation is implied from the order
subscripts: vapor to liquid. For the sake ofgdioity we can define the latent heats as follows:

« L,=250x16Jkg" (0°C) latent heat of condensation (function of T)
e L,=2.25x16Jkg" (100°C)

« L;=0.334x10J kg latent heat of melting

« L,=2.83x16Jkg" (0°C) latent heat of deposition

Also, the important relation,.= L, + L; should be noted. In general, these terms areatk:for
p=const, but L does vary with temperature as inditabove. So, why is L a function of temperature?
From the First Law, we can show that L is relatedn enthalpy change, i.e., LAh.

[Proof: Since dp=0, the First Law can be writterilgs= ¢dT = dh.]
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Deposition
< Freezing Condensation
L. Liquid L Water
Ice il W ater vl vapor
Melting Evaporation
I—iv
Sublimation

Figure 3.3. Schematic depiction of latent heatogponents.

To examine this temperature dependence, we damtosving expansion, based on the definition of the
total derivative (note that h = f(T,p):

dh = @h/oT), dT + @h/op)r dp (definition of the exact differential),
and apply this to two states a anddh£L=h,-h,):
d(Ah) = @Ah/OT), dT + @Ah/op)r dp.
For an isobaric process, only the second term kariand we have
dfh), = dL = (@Ah/OT), dT = @hy/0T),dT - Oh/0T),dT
= (6o~ Ga)dT.

This latter equivalence is based on the definiabapecific heat (see Section 3.4)=adq/dT = dh/dT
for an isobaric process.

From the previous equation, we can write
(0L/0T), = Acy, (3.15)*
which isKirchoff's equation Thus, the temperature dependence of L is retatéie temperature

dependence of,c Bolton (1980) provides an empirical equatiort thes a linear form for the
temperature correction of,L

Ly = (2.501 - aJ) x 1 J kg*, (3.16)

where a = 0.00237C* and T is the dry bulb (actual air) temperaturé@ Table 3.2 includes the
values of the latent heats of sublimation, meltany evaporation for a range of temperature.
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Table 3.2. Temperature dependence of the valulasenit heats of sublimation, melting, and evaporat

15

T (°C) Ly (1PJkg) | Ly (10C°JIkg) | Ly (10°J kg)
-100 2.8240
-80 2.8320
-60 2.8370
-40 2.8387 0.2357 2.6030
-20 2.8383 0.2889 2.5494
0 2.8345 0.3337 2.5008
20 2.4535
40 2.4062

3.11 Equivalent potential temperature and the satuated adiabatic lapse rate
3.11.1 Equivalent potential temperature (approxientatrm)

When an air parcel becomes saturated, and cortiamsakes place upon further cooling, then
we must consider the latent heating by condensdtigmmultiplied by the mass of water vapor
condensed during the process. This heating caxfressed by a change in the saturation mixing,rati
I'vs, iN this saturated statgQuestion: Is this an adiabatic process since dq #0?] Our
starting point is the same as for the potentiabmature derivation, with the exception that dgdsy
nonzero due to latent heating. The magnitude d§ diae latent heat,|(J kg") multiplied by an
incremental change in saturation mixing ration, tkg kg" — this is really dimensionaless). The units
are therefore J kg

dq = -L,drs = GdT -adp. (3.17)
Substituting the equation of stategRT for a, and rearranging terms in the above yields
dT dp
— =Ccp, = —~Ryq—.
T PT p

Taking a log differential of Poisson's eq. (3.10e,can write

Ry
din6=dInT-—dInp

or Cp o =Cp—/ -~ RdF (we will see this a lot!)*

Combining this with eq (3.14) yields

v o9
cpT Y 8
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Our physical interpretation at this point is thas tatent heating changes the potential temperafufe
parcel, such that a reduction {g (dr,s < 0) corresponds to a positive.d

The LHS of the preceding equation would be cumbeesto integrate, as it currently stands, becayse L
=L, (T). With the use of a graphical (thermodynandiiggram, it will later be shown that

L L,r
—dr, = dl:L_I‘_’s:l (this is an approximation, but it providesexact differential)

CpT Cp

Thus we have

[ ]
e

which can be integrated, assuming that 6, as 4T -> 0, to get
_ I‘vI rvs =In ﬁ ,
c,T o,

Lvifvs . . N
B = Gexpt—J (approximate form) (in kg kg") (3.18)

or

CpT

which is anapproximationfor equivalent potential temperatufg, Note the approximations used here:
(1) we assumed thaf and L, are independent of and/or T and p; and (2) we made the approximation
in the differential (L/c,T)dr,s= d(LrJc,T). In essence, we have assumed thaslindependent of
temperature, which sacrifices precision in thegraéed form. T,in Eq (3.18) is the temperature of the
parcel's saturation point (SP), traditionally caltke lifting condensation level or LCL, angdis the
mixing ratio at the LCL (or alternatively, the aatwvater vapor mixing ratio of the parcel). These
terms/processes will be further defined and exdaglin a subsequent chapter, “Atmospheric
Thermodynamical Processes."

A semi-empirical formula fo8,, superior to Eqg. (3.15) and accurate to withirb+0, is

6, = Hex;{ 261_75"5] (within 0.5 K) (tsin kg kg") (3.19)*

sp

(I don't recall the source of this, but it is givas Eq. (2.36) in Rogers and Yau 1989. Note tiet t
numerical value 2675 replaces the ratjgdp, so this implies some constant values fpand especially
Ly. This form is good for quick, relatively accuratdculation 0®,.)

An accurate calculation & requires an accurate determination gf @, ¢,, and an integrated form that
does not assume thayj; Is consant.
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3.11.2 Equivalent potential temperature (accurate form)

Becausd, is conserved for moist adiabatic processesmidely used, and its accurate
calculation has received much effort. An analgtitution is not possible. The approximate form
derived in the previous section may produce ewdB4 K under very humid conditions (i.e., large r
Please refer to the paper of Bolton (1980) foresentation of the accurate calculatior®of We will
consider this in some detailAssignment: Read the paper by Bolton (1980).]

http://ams.allenpress.com/pdfserv/i1520-0493-108-046.pdf

Bolton’s curve-fitted form o6€. is

6. = Hexr{( SIS O.OOZSAJX r,(L+ 081x10°° rv)} (within 0.04 K) (gin g kg®) (3.20)

sp

3.11.3 Saturated (psuedo) adiabatic lapse rateeliminary form

The derivation of the saturated adiabatic lapse rat e is complicated and requires
advanced tools that are developed in later chapters . The derivation below is first
order. A complete derivation is presented in Chapt er 6 (my notes).

When water droplets condense within an ascendincgh two limiting situations can be
assumed: (a) the condensed water immediately detheeparcel (the irreversibbseudo-adiabatic
process), or (b) all condensed water remains withérparcel (the reversibgaturated-adiabatic
process). In reality, the processes acting withdnds lie somewhere in between. Here we consier
pseudo-adiabatic process. With the addition @raheating, one may anticipate that a rising parce
undergoing condensation will cool less rapidly thatunsaturated parcel. Our starting point is4)3.1
but with the hydrostatic equation term gdz subsddoradp in (3.14). We can then write

-Lydrs = GdT + gdz. (remember dp/dz pg)
We will ignore the effects of water vapor being teelsalong with the dry air and write the above as

daT _-Lydns 9

dz Cp dz Cp

Applying the chain rule to ¢ydz yields

dT _-Ly dnsdT g
dz cp dT dz cp’

which is similar to the definition of the dry adatke lapse, with the addition of the somewhat messy
water vapor term (first term on the RHS). Solvihg above for dT/dz, the approximate saturated
adiabatic lapse rate is given as
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1+ v vs
c, dT

p

In order to use this quantitatively, one needsrtovkthe functiong(p,T) to determine ¢ydT. A

functional relationship for,g is obtained from the Clausius-Clapeyron equatiotne considered in a
subsequent chapter. We also note that the magnitiid is not constant, but decreases (nonlinearly) as
T increases. This is not obvious from Eq. (3.21L}, will become more apparent when we understa@d th
Clausius-Clapeyron equation. On a thermodynanaigrdim, lines depicting constdnttherefore have a
variable slope, and are called saturated adiaBgtsvalent potential temperature is constant along
pseudo adiabats; thus they can be labeled accalihgir value oB..

Note that the pseudo adiabatic process is irréderddecause all condesed water leaves the parcel
(immediately) and is not available for evaporatitwould the parcel later descend. The derivaticanof
expression for theeversiblesaturated adiabatic process is given in Chap. 6.
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3.12 Atmospheric Thermodynamic Diagrams
Refer to Chapter 9 in Tsonis.

A thermodynamic diagram serves as a valuablettoiiustrate the relationship between dry
adiabats, saturated adiabats and other thermodgnemables. A number of thermodynamic diagrams
used for atmospheric applications have been caststiu We have considered only the simple p-V
diagram so far (e.g., Fig. 3.1). Any diagramaséx on two thermodynamic coordinates. With two
thermodynamic variables being defined, other védegmbnd processes can be determined based on the
Equation of State, First Law, and ancilliary redat that we have considered, or will consider. For
example, the dry and saturated adiabatic lapse caie (and must) be drawn on an atmospheric
thermodynamic diagram to illustrate static stapildnce the coordinates are defined, then othéneso
(e.g., saturation mixing ratio, dry/saturated adtapisotherms, isobars) can be defined and dramtheo
diagram to graphically represent atmospheric pseEeand evaluate static stability. Some examples
include:

* skew-T, In p diagram (T (skewed), In p - our fat@yi

* tephigram (T,s - Rogers and Yau)

* pseudo adiabatic chart (T,p - Wallace and Hobbs)

» Stuve diagram

* Clapeyron diagram (-@; not desirable, but listed for sake of illustrafio

The most commonly used diagrams are the skew-Trentephigram. Interestingly, it seems as
though the "tropical” meteorologists favor the tigplim (with the exception of Rogers and Yau, whe ar
Canadians). The skew-T is most widely used irrélsearch and operational sectors in the U.S. éalid
atmospheric thermodynamic diagram has the follovi@agures:

1. area equivalence: the area traced out by somegwoed., the Carnot cycle, is proportional to
energy;
a maximum number of straight lines;
coordinate variables that are easily mearurederatmosphere;
a large angle between adiabats and isotherms;
a vertical coordinate that is approximately linegth height.
The tephlgram and skew-T closely satisfy nearlyradke criteria. The table below summarizes the
imporant aspects for some diagrams. Note thatkbe-T, which we will use in this class, exhibitesh
of the ideal properties. See Irabarne and Gods®n3(, pp. 79-90) and Tsonis (Chapter 9) for a more
complete discussion.

GIEIARN

Table 3.3. Summary of thermodynamic diagram @utigs.

Diagram Abscissa Ordinate Straight line charésties Angle between
isobars  adiabats isotherms adiabats/isotherms
Skew-T, In P T Inp yes no yes nearly®@ariable)
Tephigram T In6 no yes yes 98
Stuve T o yes yes yes
I o
Psueo-adibatic T Hy yes yes yes ~45
Clapeyron a -p yes no no small
Emagram T -Inp yes no yes ~95

Refsdal InT -Tinp no no yes -85
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Diagram Abscissal Ordinate Straight line characteristics | Angle between adiabats and
isobars | adiabats isothermssotherms

Skew-T,InP| T Inp Yes no Yes nearly 900 (variable)

Tephigram | T In6 no Yes Yes 900

Stuve T p* Yes Yes Yes

Psueo- T -PKg Yes Yes Yes 450

adibatic

Clapeyron a -p Yes No No small

Emagram T -inp yes No Yes ~450

Refsdal InT -Tlnp no No yes ~450

Various isolines are drawn on thermodynamic diagancluding isobars, isotherms, lines of
constant saturation mixing ratio, dry adiabats satdrated adiabats. Applications include:
» represention of vertical profiles of temperaturd amisture (i.e., soundings)
» evaluation of static stability and potential thursdlerm intensity
» quick estimation of derived thermodynamic quargisech as:
- relative humidty, given the temperature (T) and p@wt temperature ()

- mixing ratio, given F and pressure p,

- potential temperature and equivalent potential exapire, given p, T andyT
» determination of cloud/environment mixing processes

» determination of thickness (1000-500 mb thickness)
e mixing processes (advanced application)
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Some web links:

http://meted.ucar.edu/mesoprim/cape/print.htm

http://meteora.ucsd.edu/weather/cdf/text/how tod rekewt.html

A good tutorial with bad graphics:
http://mwww.ems.psu.edu/Courses/Meteo200/lessonsdiskew plot.htm

Sources of skew-T diagrams (real-time and histfrica

1) NCAR/RAP — the best Skew-T on the web:
http://www.rap.ucar.edu/weather/upper/

2) University of Wyoming — flexible site, data, skd or Stuve diagram; historical data
http://weather.uwyo.edu/upperair/sounding.html

3) Unisys
http://weather.unisys.com/upper_air/skew/

Other valuable information:

GOES satellite sounding page — good informatioslaw-T's and their applications. We will examinany of
these during this course.
http://orbit-net.nesdis.noaa.gov/goes/soundings/gkml/skewtinf.html

RAOB program:
http://www.raob.com/

Buoyancy and CAPE

http://meted.ucar.edu/mesoprim/capel/index.htm

http://meted.ucar.edu/mesoprim/cape/print.htm
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Problems
Solve problems 1-7 below. ATS 441 students mayevproblem 1.

1. Calculate the work and internal energy for an isotial compression (isothermal change, which may

or may not be brought about by an isothermal pjoafsan ideal gas from;Ao0 A;(see diagram

below) for each of the following processes:

a) isothermal reversible compression;

b) sudden compression fromto p (e.g., dropping a weight on the piston of a cydindontaining
a gas) and the subsequent contraction;

c) adiabatic reversible compression tpfpllowed by reversible isobaric cooling;

d) reversible increase of the temperature at constdntne until p = p followed by reversible
decrease of T at constant p until V & V

’%xt
A¢

b,d

A;

2. Adry air mass ascends in the atmosphere from i@ 700 mb. Assume no mixing or heat
exchange, and an initial temperature oPCO Trace outhis process on a skew-T, In p diagram, and
then find the following:

a) the initial specific volume;

b) the final temperature and specific volume;

c) the change in internal energy;

d) the work of expansion by 1 Krof the air (volume taken at initial pressure).

3. Recall that the specific enthalpy of a gas is dafiby h =u + g.
a) Prove that dh for an ideal gas is an exact diffésen(See Section 2.1, Tsonis).
b) Calculate the change in enthalpy of a unit mashyfir as it is compressed adiabatically from
700 mb and a temperature of D, to a pressure of 1000 mb (as in the previoablpm).

4. Computeb, using the approximate form given by Eq. (3.18%, $bmi-empirical form given by
(3.19), and the accurate form given by Eq. (3.82). @3 in Bolton 1980). Assume the following
extremeconditions, the first for a very cold day, and sieeond for an extremely hot and humid day
in the Southeast. Any conclusions?

Case p (mb) T (°C) T4 (°C)
(a) Cold day 1020 -20 -40
(b) Hot day 1005 40 27
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5. We have considered four different kinds of procssssobaric (p = const), isothermal (T = const),
isochoric @ = const), and adiabatic (dq = 0). We defineak ltapacities for only two of these
processes, namely at const pressure and volumg. dilflwe not consider heat capacities for the
other two processes?

6. Commercial jet aircraft fly at cruising altitudes39,000 — 40,000 ft. Yet such aircraft carry heat
exchangers to cool cabin air at these altitudes.

a) Estimate the temperature at such cruising altitugetint: Use the skew-T, In p diagram to
estimate a representative temperature and preastiris altitude.)

b) Explain why the air must be cooled. (Assume thatdabin pressure is 85 kPa.)

¢) How much heat much be added to the air to achieabim temperature of Z&? (Assume the
cabin pressure is 85 kPa.)

7. Explain the following dilemna: a) Heated air exgan b) When air expands, it cools.

Solve the following problems in Petty:
5.4

5.7

5.10



