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2. The Equation of State
Related material in Tsonis: Chaps. 2 and 3

At the onset, take careful note of the notatiordusé some cases, a variable, such as M, may daveal
definition. Please note any duplication in thiapter, including the Appendix.

2.1 The equation of state and elementary kine@omh

The equation of state has been derived from bottirezal and theoretical approaches. All gases
are observed to obey — not exactly, but to a vieryecapproximation — the equation of state (orligaa
law) over a wide range of conditions. We consfitst a derivation of the equation of state from
elementary kinetic theory, which is based on ctagsnechanics. This theory begins with the assiampt
that gases are "ideal." An ideal gas exhibitsdHewing microscopic characteristics:

It consists of molecules.

The molecules are in random motion and obey Negdawis of motion.

The total number of molecules is large.

The volume of molecules is negligible relativeie volume occupied by the gas.
No appreciable (molecular) forces act on the mdéeduring a collision.
Collisions among molecules are elastic and of gég#é duration.
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In addition, the following assumptions are madearding the interaction between molecules and asarf
membrane or wall which contains the molecules.

7. The collision with the wall is elastic.
8. There is no loss in momentum, in the direction pelrto the wall, during the collision with the wal
(i.e., no friction).
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FIG. 2.1. The geometry of an elastic and frictesd collision of a molecule with a flat surfaca.réality,
surfaces are very rough at the scale of ais, (@, and HO) molecules, and(i.e., the collision and
rebound angles) would not be uniform. For a stet#ly large sample of air molecules, the momentum
conservation would likely apply.

(The material below is extracted from Fleagle andiBger 1980 and Bohren and Albrecht 1998.)
Now we consider the collision of a molecule witke thall according to the geometry shown in Fig. 2.1.
The change in momentum (mv) occurs from only tloabgonent of motion perpendicular to the wall, and

can be expressed as

mvcod - (-mvco$) = 2mvco$. (2.1
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If we consider collisions from all molecules impagtthe wall from all angles, one can show from
elementary kinetic theory (e.g., Fleagle and Busiri®80, p. 31) that the incremental change in nmbame
is

mv2dn,sinBcosde, (2.2)

where dprepresents the number of molecules with speedgeletv and v+dv per unit volume.
Integration between 0 armd2 accounts for the collisions from all directioriBhe integration result is:

(mV#3)dn.. (2.3)

The differential force exerted on the incrementaface dA is found by integrating over all the raruj
velocities of all molecules:

dF = (m/3)( vdn,)dA. (integrating from O to n) (2.4)
Since the definition of pressure is p = F/A, thegsure on the surface is then

p = dF/dA = (m/3) vZdn,, (2.5a)
which may be expressed as (assuming a total oflecmes)

p = mRV)%/3 (2.5b)
where(v) = (1/n)[v?dn, is the average speed of a molecule.

Eq. (2.5b) can be rewritten, using the identity=INdV (which assumes that the molecules are dig&tbu
uniformly over a differential volume dV), as

pV = (1/3)Nm{v)? (2.6)

If we consider a particular volume, such as theamgpecific volumer,,, (the volume of one kilomole of
gas; units mkmol™), which contains pimolecules (Avogadro’s number), Eq. (2.6) can heressed as

POt = (L/3)N(W) (2.7)

At this point we define temperature as being propoal to the average kinetic energy of the molesul
according to

(3/2)KT = (1/2)Xmv)? (2.8)

where 3/2 k is a constant of proportionality arid the Boltzmann constant (k = 1.38 x20 K%). (this
relation is the definition of temperature on a kiméheory or microscopic basis, and is necessalink kinetic theory to the
equation of state for an ideal ggsSubstitution of Eq. (2.8) into Eq. (2.7) prodadhe equation of state for an
ideal gas:

Pty = KNoT = R*T, (2.9)

where R* = kN is the universal gas constant. The value of B:31441+ 0.00026 J md! K™, and hence
the value of k = 1.3806620.000044 x 18°J K*. We note that k can be interpreted as the gastaoin
for a single molecule. We also note that, fomgla gas (or mixture of gases), k &hd hence R* are
universal.
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The Appendix contains a slightly different derieatiof the gas law, using kinetic theory. (Also $senis,
pp. 7-10.)

The equation of state can also expressed in tefithe specific volume =p™* according to the definition
o=0y,/M,

where M is the molecular weight of the gas. Thendquation of state then assumes the more farfuliar
pa = (R¥M)T = RT, (2.10)

where R is the specific gas constant for a gas mvdlecular mass M.

An aside[extracted from Fl eagl e and Busi nger, p. 34]

The numerical value of R can be determined expeattiatly. We find that a specific mass of gas brdugh
into temperature equilibrium (after some extendi} with an ice surface (via conduction) alwaysiat
the same volume. A similar behavior is observedjises reaching equilibrium with boiling watergig
the boiling point has a specific temperature) bdth cases, the average kinetic energy of the géecuoles
approaches that of the contacting molecules, ithvbase the systems in contact have uniform terapera
and are in equilibrium. It is also observed thhewtwo different masses of gas (or systems) amaghit
into equilibrium with melting ice, they are alsoaquilibrium with each other. This is a general
thermodynamic principle called tiZ&roth Law of Thermodynamics.

2.2 The classical equation of state (ideal gasg)la the empirical approach

Laboratory experiments have shown that pressutameand temperature of a gas are related by
an equation of state. In the laboratory settixperiments conducted by early physicists/chemists
examined the relationship among the 3 variablésergas law by holding one constant. For a cohstan
temperature (isothermal) process, Boyle (1600's3aliered that the volume V of a gas is inversely
proportional to pressure p.

1. Boyles Law: \Jp* for an isothermaprocess.

Later experiments by Gay-Lussac (and Charles?))($yGd to two additional “Laws”. Bohren and
Albrecht (1998) state that the empirical work oe itheal gas law should have been attributed to Gay-
Lussac, rather than Charles, who never publishe#t imcthis area. (In fact, Tsonis makes referemcthe
First (T,V) and Second (T,p) Laws of Gay-Lussac.)

http://www.grc.nasa.gov/WWWY/K-12/airplane/aboylenht{from google on “Boyle’s Law”)

2. For a fixed mass of gas at constant pressure (ig)lthe volume of a gas is directly proportion to
absolute temperature.

First Law of Gay-Lussac: /T for an_isobarigrocess:
[Charles First Law]
dVv =aVdT

(Vois the volume at T = OC, anda is the volume coefficient of expansion at consfamessure, with a
value of 1/273 deg

The above equation can be integrated to give th&ar between V and T:
V = Vy(1+aT)

A graph is shown in Fig. 3.1 of Tsonis.

http://en.wikipedia.org/wiki/Gay-Lussac's_law
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http://www.chem.csus.edu/gaslaws/gay-lus.html

3. For a fixed mass of gas at fixed volume (isochotle@ pressure is proportional to the absolute
temperature.

Second Law of Gas-Lussac: /T for an_isochorigrocess
[Charles Secondlaw]
dp =BpdT

(po is the pressure corresponding to a temperatufeldT®@. [ is the pressure coefficient of thermal
expansion at constant volume and has the valu8H&g".)

Again, we can integrate the above differential ¢iguao get
P = R(1+BT)

A graph of this function (Fig. 3.2, Tsonis) is dianito that of Fig. 3.1. Note that an extrapolatio
of both graphs to V=0 or p=0 defines absolute z&x63°C (but for arideal gas).

Discuss the Application paragraph in Tsonis, pagjebbttom:

Houses are not air tight, and in fact are ventithteith exhaust fans in bathrooms, and with
clothes dryer vents.

The above simple laws can be combined to infeethetion of state. Tsonis discusses this in alsimp
fashion on p. 15 (Section 3.7) of his book. Frasdguation (3.7), we have

pVIT = p'V'/T’ = constant = A
or

pV = AT,
where A is a constant, which can be equated toas_dllows.

pV = nR*T = m(R*M)T = mRT (211
where n = number of moles (or molar abundance), tiotecular (molar) weight, R* is the universal gas
constant and R = R*/M is the specific gas constfamta given gas, or mixture of gases). This eiguatan
also be expressed in terms of dengity:(m/V), yielding the intensive form

p =pRT. (2.12a)

Using the definition of specific volume: = p™!) one gets an expression identical to (2.10),

pa =RT. (2.12b)

This latter expression is one that we'll use madstis equation provides a good approximation ferdhy
atmosphere.

For a mixture of gases, we can utilize the sanuaiion of state by invokinBalton's Law of
partial pressureswhich states

p =Zpi(T,V) (g is the partial pressure of gas i), (2.13)

or by Amagat’s Law of partial volumes
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V=2V (T,p) (2.14)

Both relations, 2.13 and 2.14, are exact for id@aks, but are only approximate for real gases.
It can be shown that the equation of state holdsnigtures of gases as well as for the individual
component gases, i.e;ap= RT. Thus, the value of R for tliry atmosphere in Egs. (2.12a,b) is R

287.05 J kit K1 (Table 1.1). [We also note that;M 28.96 g mét.]

Wikipedia discussion of the ideal gas lafttp://en.wikipedia.org/wiki/ldeal _gas_law
Hyperphysics, Georgia State Univhttp://hyperphysics.phy-astr.gsu.edu/hbase/kindégas.html

Next, we will consider an equation of state forighair (i.e., air having water vapor also). Befor
we do so, let us define some moisture variablgsattacommonly used in atmospheric thermodynamics:

« water vapor pressure (ekhe partial pressure due to water vapor molecifléow could this be
measured? We will see that it can be determinearétically/analytically.)

*  mixing ratia r, = m,/my
» specific humidityq,, = (m,/(my+mg)) = r,/(1+r,) (2.15)
The equivalent form of Eq. (2.12) is thus
P = pml[(MgRg+my,Ry)/(mg+my,)] (mass weighted) (2.16)

where ny and ny, are the masses of dry air and water vapgr=R*/My, o = 461.5 J kgt K1, moist air
density py) is

Pm = (Mg+tmy) /' V =pqg +py (2.17)

and V is the volume of the gas. Eq. (2.16) carchitten as

R,

Mg +m, ——

= T
P=pPmRy o+,

Dividing each term in the brackets of the abovatieh by m yields

1+ ﬂ&

my Ry
1+ ™
my

P=pPmRyT (2.18)

where the quantity IRy =¢ = 1.61.
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Using the definition of mixing ratio {= m/mg), Eq. (2.18) can be rewritten as

_ o Ropit16Ly )10
or, by using the definition of specific humidity as
P =pmR4T(1+0.61Q) (2.20)

Since {; only very rarely exceeds 22 g'ﬂg’n the atmosphere (this can be shown with relatigys that will
be developed and examined in subsequent chaptets) &< 1 (0.025 at most), the, & r, and Eq.
(2.20) can be expressed (approximately - this iRract) as

P =pmR4T(1 + 0.61y) (2.21)
If we define virtual temperature as

Ty = (1+0.61q)T 0(1+0.61¢)T (2.22)
then (2.20) becomes

P=PmRdTy- (223)

Example: Find the density of the air outside a thne.



ATS 541 Chapter 2 9/30/2008

2.3 An empirical equation of state with correctidosthe non ideal nature of gases

Van der Waals’ Equation (1873) is an empiricalaiun of state accounting for the non-ideal
nature of gases:

(p + avi(V - b) = R*T, (1 mol) (2.24)

where a and b are specific constants for each §ash empirical equations were formulated to acttom

the non-ideal behavior of gasgawre can be added here on how this equation is derived.]
Al so, refer to http://chened. chem purdue. edu/ genchen t opi crevi ew bp/ ch4/ devi ati on5. ht n

Another empirical equation of state that bikhkia better fit to observed data was formulated b
Kammerlingh-Onnes and is given as

PV=A+Bp+Cp+Dp’+ . . .
=AL+Bp+Ch+....), (1 mol) (2.25)
where A, B', C', ... are called the virial coeffiots and are functions of temperature. The firalv
coefficient is A=R*T for all gases, as it is thdwa of pV for p->0. The table below gives the satwirial
coefficient for dry air. Higher order virial coaffents may be neglected for normal atmospheriditmms

(<0.2% error).

Table 2.1. Second virial coefficient B' for dry.aiTaken from Iribarne and Godson (1973)

T (°C) B' (10—8 m2N'1) pV/IR*T
p = 500 hPa p = 1000 hPa
-100 -4.0 0.9980 0.9996
-50 -1.56 0.9992 0.9984
0 -0.59 0.9997 0.9994
50 -0.13 0.9999 0.9999
2.4 A linearized equation of state

Note that (2.21) is a nonlinear equation, i.einvblves products of at least two atmospheric
variables. By linearizing equations about a dfgnence state, it is possible to simplify cloud/osezle
models and provide an easier tool to (sometimeg)mtise atmospheric thermodynamic properties. The d
reference state is defined as a dry horizontalijeam atmosphere that varies in height (z) onlyefdkence
state variables are denoted with the subscrif@@partures from these variables are then definezh as
p'(z) = p(z) - p. By definition, the reference state obeys thelgagno,=RyTo. For our equation of state

in Eq. (2.21) we implement the following decompiasis of the thermodynamic variables:
a=agt+a’, p=p'+Ry, T=T'+Ty,, and (=r,/ (since the reference state is dry),

Eq. (2.23) becomes
Po(1+p /) ag(l+a/ag) = Ry(1+0.61¢,)To(1+T'/Ty)

Now we take the natural logarithm of both sides:

IN(1+p'/Ry)+In(1+a'/ag) = In(1+0.61)+IN(1+T/Ty)
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Expanding in a Taylor's series [In(1+x) = XX + x3/3 +... for [x|<1] we can obtain

plpg +a'lag =TTy + 0.61 ¢ (2.26)
or

a'lag=T/Ty+0.61( - p/py. (2.27)
Eq. (2.27) represents a linearized equation o $tata moist system. Thus, fluctuations in speciblume
are produced by the (linear) sum of fluctuationteimperature, moisture and pressure with respebeto

basic states.

Question: Explain why Eq. (2.27) is an approxinfaten of the equation of state. (Note that weaialy
cannot refer to it as an ideal gas law.)

Example
Typical perturbations within a cloud are:

T ~1K (up to 15 K)
i ~2 g kgl (up to 8 g kgl
p' ~ 0.2 mb (up to 1-2 mb)
Thus, T'/Ty = 1/273 = 0.0037 4t = 0.002, and p'gp= 0.2/800 = 0.00025.

Temperature and moisture perturbations are comjgasaiol thus provide the most important contribigion
to density fluctuations in the cloud (or cloud-fremvironment. Only in limited regions of cloudsggms
does p' exceed 0.2-0.4 mb. [It is the densitytfiations that control cloud dynamical processess.]

2.5 Measurements of temperature, pressure, andrwaper

Temperature: thermometer, thermister, thermocouffResmission, microwave emissionand)
Density: lidar

Pressure: barometer (mercury, aneroid), transducer

Water vapor: wet bulb temperature, RH directlyatidifferential absorption, microwave emission
Virtual temperature: radio acoustic sounding systiefSS — speed of soundT,)
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Review (fromhttp://www.grc.nasa.gov/WWW/K-12/airplane/eqgstatt

Gl
Equation of State nesZQI'cn
(ldeal Gas) Center

Properties

Density =r Pressure =p Temperature=T Volume =V Mass=M
Observations

Boyile: For a given mass, at constant temperature, the
pressure times the volumeis aconstant. pP V= (::1

Charles and  For a given mass, at constant pressure, the volume
Gay-Lussac! g directly proportional to the temperature. Y = CET

Combine: pV/T =n R R =831J/mole/K° (Universal)
i pV=nRT n = number of moles

Divide by mass: ifi —y= Yolume _ 1
D Y Specitic Volume=v= v v

p‘“% oo pv=RT or p=R¥rT

R = Constant value for each gas
286 kJ/ kg /K® (for air)

10
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Refer to the following web site which has the 3dnation of state diagram shown below. This provide
very good review of the equation of state.

http://hyperphysics.phy-astr.gsu.edu/hbase/kindégas.html

11
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Example (Wallace and Hobbs, 2006)

If at 0 °C the density of dry air alone is 1.275rkgand the density of water vapor alone is 4.7703%g0
m®, what is the total pressure exerted by a mixtithedry air and water vapor at 0 °C?

Solution: From Dalton’s law of partial pressures, the totalgsure exerted by the mixture of dry air and
water vapor is equal to the sum of their partigigsures. The partial pressure exerted by the diy ai

Pa = PaRaT

wherepygis the density of the dry air (1.275 kg’rat273 K),Ryis the gas constant for 1 kg of dry air
(287.0 J K* kg™h), andT is 273.2 K. Therefore,

Pe = 9.997 x 16Pa =999.7 hPa
Similarly, the partial pressure exerted by the waspor is
e =p,R,T

wherep, is the density of the water vapor (4.770 X k@ nt at 273 K),R, is the gas constant for 1 kg
of water vapor (461.5 J'kKkg™), andT is 273.2 K.

Therefore,
e=601.4Pa=6.014 hPa
Hence, the total pressure exerted by the mixtudryhir and water vapor is

p=p+e=999.7 + 6.014 hPa = 1005.7 hPa.

12
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Homework
Review the examples on pp. 19-22 of Tsonis
Problems(due in one week)

1. (a) Determine the number of molecules in a £ ealume of air having a pressure of 1 atm. Make an
other reasonable assumption if required. [Ans: &Bali0*® cmi® — your answer will be more precise].
(Note, this is similar to problem 3.5 in Tsonid) What is the mean free path for the average mtdec
in this volume? Mean free path is determined b, = (no)™, where n is the number of molecules
per unit volumeg = 1m,? is the collision cross sectioa {s about 3 x 18° cnf for an air molecule),
and g is the diameter of an average molecule. You t&elcyour answer with Fig. 1.1b.

2. Atwhat pressure is the ideal gas law in error %y fior air with T = 0°C? [Ans: 17 atm; Hint: Use
Table 2.1]

3. (&) Calculate some extremes in air density attiniase for different scenarios. For example, abersi
(a) International Falls in the winter under higlegsure (anticyclone) conditions: T = B, p=1050
mb, {,=0.1 g kgl; (b) Denver in the summer with T = &5, p=850 mb (actual station pressure) and

rn=10g kgl. (c) What are some practical implications (eaggraft lift, wind drag on a vehicle)?

4. [Fleagle and Businger Prob. 1, ch. 2.] If hiblecules are required in order to ensure a Statily
uniform distribution of velocities in all directignwhat is the minimum volume in which the state ca
be defined at standard atmospheric conditions (b310b, T=0°C)? [Ans. 37.21x16" m®, which
corresponds to a linear distance of 3.34%f@0for a cube. Hint: use the definition dN = ndV]

5. Show analytically (using appropriate equations,just simple calculations) that the density of rhois
air is less than that for dry air at the same teatpee and pressure. Interpret your result. Dboiss
difference have any relevant atmospheric applioafio (Hint: Refer to Petty)

Complete the following problems from Tsonis:
3.1

3.2 (Do this via IDL, PV-WAVE, or Excel)
3.7

ATS/ES 441 students: You may eliminate two problefgour choice, or if you turn in all problemswill
ignore the lowest scores on two problems.

13
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Appendix: Derivation of the gaslaw from kinetic theory using a slightly different approach
(See also Tsonis, pp. 7-10)

We consider a volume of N identical molecules withicubic container having a volume V.
We begin with Newton’s Second Law = d(mv)/dt. (mv is momentum, and is the velocity vector.)
The momentum change that a molecule of mass miexges after collision with a flat surface is

2mv, = [Fdt
During a finite time intervai\t, the number of molecules that strike an area thefsurface is RAAL/2,

where n = N/V is the number density of identicalecoles. The time-integrated force on the arés the
following (where k is the instantaneous force on the area A):

%nvx 2mv, AAt = [{F,dt

The average force over a time intenvst! = Jdt is

_ Rt
(Fa) = At

Since pressure is defined as force per unit areaHf#\), we can use the previous two equationsritew
p=nm{v,’)

We have assumed that all molecules have the sameel ST his is not true, but we can use an avegeeds
(vy) in place of y, which is shown in the preceding equation. We alsed to be more realistic by
including all three motion components. On averdge kinetic energy of all components is identical,

() =) =(w")

Then we make the assumption that the total spégdelated to its componentg, v, and y according to

2\ _ 2 2 2\ _ 2 2 2
(V)= (v ruy® +v?) = (v () + (v
Question for ATS 541 students: Under what conaftis this true?

Then the momentum of an ensemble of N moleculdsmwit volume V can be expressed

e

Now we make a statement, based on our wisdomreleates the momentum to absolute temperature:
1 1 3

—<mv2>=kT or (=mv?)==kT

3 2 2

where k is Boltzmann’s constant (k = 1.38 ¥10 K%). (Note: TO mean molecular kinetic energy)

Themost basic forngas law can then be written as

pV = NKT

14
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We can rewrite the above form as

p=m——T=pRT
m

Sincep = Nm/V, and the gas constant R is defined as R k

15
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True or False?

1. Atmospheric pressure is just the weight of the
atmosphere above us.

2. Absolute zero is the temperature at which all motion
ceases.

3. As temperature increases, so does pressure, and vice
versa.

4. Cold air is denser that hot air.

16
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