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ABSTRACT 
School of Graduate Studies 

The University of Alabama in Huntsville 
 

Degree: Masters of Science   College/Dept: Science/Atmospheric Science 
 
Name of Candidate: Dustin W. Phillips          
 
Title: A Case Study of the 24 June 2003 Bow Echo Event in Iowa during BAMEX 
 
 

An analysis of a bow echo even that occurred on 24 June 2003 over northwest Iowa is 

described with analyses of Doppler radar observations, plus special data sets acquired by the 

Mobile Integrated Profiling System (MIPS) and the Eldora Doppler radar on board the Naval 

Research Laboratory P-3 aircraft.   Two primary goals are addressed: (1) The nocturnal boundary 

layer in advance of the bow echo, and the changes to the NBL produced by the bow echo, are 

defined.  (2) A description of the internal storm structure from an analyses of the Doppler radar 

and profiler observations is presented.   

The emergence of the bow echo was correlated with the arrival of an inferred gravity wave 

that originated from intense deep convection on the west edge of the MCS, and then moved 

eastward through the low-level cold pool. The maximum radial velocity (exceeding 40 m s-1) was 

measured by the Des Moines WSR-88D radar immediately after this wave reached the main 

convective line.    The peak updraft within deep convection, ~20 m s-1, occurred about 10 minutes 

after the gust front arrival while the peak down draft of ~8 m s-1 occurred 15 minutes after the 

gust front.  The maximum surface wind gust of 24 m s-1 was measured 2 minutes after this down 

draft.  Airborne Doppler radar documented a shallow outflow layer with radial velocities 

approaching 30 m s-1 at 1 km AGL, as well as strong rotations within the gust front and anvil 

during the decaying stages of the bow echo.  

Abstract Approval:  Committee Chair ____________________________ 

    Department Chair ____________________________ 

    Graduate Dean  ____________________________ 
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