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Goals

a) Investigate the role of Sc clouds in maintaining CAPE during the nocturnal period of

this regional severe weather outbreak on 15 March 2024.

b) Utilize ground-based remote sensing (GBRS) to evaluate cloud properties and sub-
cloud stability (beneath stratocumulus (Sc) clouds)

c) Basic hypothesis: Sc clouds modulate the diurnal variation in sub-cloud T (and
stability), maintaining warmer T at night. Current generation models may produce
excessive nocturnal cooling and stability if Sc clouds are not well-replicated.

Background

 Cool season Sc clouds (Knupp et al. 2024) may play a role in supporting nocturnal QLCSs
and tornadoes that frequently occur during the SEUS cool season.

* For high-wind cases where shear production of turbulence is dominant, BL turbulence
also plays a role in reducing surface cooling (and maintaining CAPE).

* Bold blue text represents physical processes
* \ertical shear is strong within the (sub)cloud layer
Thin text depicts atmospheric parameters and
conditions
e Shear production of turbulence is significant
RECITTE (G2t * *The PBL can range from unstable (minority) to
weakly/moderately stable (majority)
* Shear generation dominates buoyant generation of
TKE
, S * Sub-cloud layer is generally stable = promotes
et ! b high shear
» Evaporative cooling from drizzle/rain, and negative
heat flux (cold surface) exert a stabilizing influence.

Conceptual model of cool-season, warm-sector Sc
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* The PBL can range from unstable (minority) to stable (majority).

Data and Methods
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e Surface met
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e Surface met
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Data Analysis

The lapse rate beneath cloud base is a key variable,
and can be estimated from:

e Balloon sounding measurements from SWIRLL (high-
resolution, limited temporal resolution, expensive)
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* Microwave radiometer (MWR) profiles from SWIRLL

 RASS T, measurements (CTD): 60-min temporal
resolution, but some noise in the T, measurement,
which includes T and vapor vapor mixing ratio (r,):
T, =T(1+0.61r,). Good approximation to static
stability provided that r, is const
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* We aim utilize the 5|mple ground'based remote Left: Schematic of the bulk lapse rate retrieval utilizing lidar and microwave
sensing (GBRS) measurements from SWIRLL to radiometer (MPR). Right: Adding independent retrieved T values from the
achieve higher temporal resolution of ~2 min under MWR produces a crude temperature profile.
favorable conditions using:
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We could add MWR retrievals below ~1 km AGL,

which will have ~2 independent pieces of
information yielding ¥4 T measurement heights
between sfc and cloud base (inclusive). We will
pursue this in the future.

* Bulk Lapse Rate (BLR) is then: BLR =
o Infrared temperature (T,z) from MWR; assume

that T represents cloud base temperature, .
which implies that clouds are optically thick
(LWP > 200 g m2)

o Cloud base height from lidar (ceilometer)

o Near surface in situ temperature, Ty,
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Observations at SWIRLL

Evolution from convective to nocturnal boundary
layer during the Afternoon to Evening Transition

(AET)
* Cooling and stabilization after 22 Z

* Increase in winds above surface layer after 22 7
 Maximum low-level wind and wind shear during

09-10 Z prior to QLCS arrival

MIPS 915 MHz Wind Profile
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 Boundary layer recovery started ~0530 Z

e Slight surface warming occurred during
the 0600-1030 Z Sc period = maintained
CAPE as 0-1 SRH increased > 250 m? s

* Sc cloud development near 05 Z. Sc base
down to 500 m AGL

* The sub-cloud layer exhibited weak
turbulence and associated mixing

Huntsville AL 34.72478/-86.64648 20240315/0803 (Observed)
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— Significant increase in severe reports
occurred well into the nocturnal L
period, 09-12 UTC (right). Why?
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SBCAPE: 531 J/kg
MLCAPE: 576 J/kg
MUCAPE: 582 J/kg
SBCIN: -24 J/kg
MLCIN: -7 J/kg
MUCIN: -4 J/kg

SBLCL: 487 m AGL
MLLCL: 644 m AGL
MULCL: 777 m AGL
SBLFC: 4898 m AGL
MLLFC: 4898 m AGL
MULFC: 4898 m AGL

SBEL: M m AGL
MLEL: M m AGL
MUEL: M m AGL
SBLI: -6 C
MLLI: -7 C
MULI: -7 C

PWV: 1.5 inch
K-index: 40
STP(fix): M
SHIP: M

SCP: M
STP(cin): M

0-1 km SRH: M m?/s?
0-3 km SRH: M m?/s?
Eff. SRH: M m?/s?
0-1 km Shear: 27 kts
0-6 km Shear: M kts
EBWD: M kts

* Primary period of interest: BL recovery period

during which Sc clouds maintained warm sfc T

exceeding 200 g m~2. The LWP also reveals

appreciable temporal variability of the pre-storm

environment.

* The green shading (right figures) defines the
primary period of interest. Five balloon soundings
(Doppler lidar figure) provide profile profile details

Sc overcast in place by 06 Z (IR temp. near 290 K)
* Sc clouds exhibited liquid water path (LWP)

and validate the remote sensing measurements

Valuable microwave profiling radiometer (MPR) measurements
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Evolution of MPR T profiles from SWIRLL

Radiometer soundings (UTC times)
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Observations at CTD
Utilization of 449 MHz radar wind

NOAA Physical Sciences Laboratory
449-MHz Wind Profiling Radar
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Destabilization under Sc cloud cover; rain ended 0420 UTC

T, profile evolution at CTD

e Cold pool was more prominent than at SWIRLL, horizontal advection was more important, CIN {,, CAPE
* Sc cloud base (dotted lines) and relative Sc cloud thickness are annotated in the T, profiles below:

Thin Sc (subliminal) SCT, thin Sc OVC, few Sc breaks, RW
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Synthesis: Evolution of Bulk Lapse Rate (BLR) at SWIRLL, and lapse rate from RASS at CTD

Combined analysis 1.0
* Sub-cloud lapse rate value is plotted, and 0.8
expressed as a fraction of the dry adiabatic ' SWIRLL
lapse rate (I'y) § 06 —
e The prominence of the cold pool at CTD g ] balloon
stands out = relative recovery is therefore ™ 0.4 | | |
more significant = o [RASS |
* The simple bulk lapse rate (BLR) technique 0.2 = |
compares very well with the profiles from .
the microwave radiometer and balloon 00 0500 0600 0700 0800 0900
soundings Time (UTC)

Summary and Conclusions

 The simple bulk lapse rate (BLR) technique worked well, but requires sufficiently thick Sc clouds
(LWP = 200 g m=3). Ideally, such clouds should be uniform with high cloud fraction.

* Given that Sc clouds are ubiquitous in the pre-storm environment of cool-season QLCSs, the BLR
technique may provide measurements that improve real-time diagnosis of trends in CIN and CAPE

 * Nocturnal Sc clouds can indeed promote sufficiently high CAPE well into the nocturnal period.
The Sc presence maintains high surface T, and may even increase sfc T during the nocturnal period,
as in this case.

* Side note: even though RASS is a relatively old technology, it provides some very unique
measurements within conditions not well suited for infrared or even microwave remote sensing of
thermodynamic profiles
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