5.2 Snow crystal and snowflake size distributions

- Similar to MP48, Gunn and Marshall (1958) proposed an exponential size distribution for aggregates of snow crystals based on observations (right)

\[N(D) = N_0 \exp(-\Lambda D), \quad [1a] \]

where \(\Lambda = 25.5 R^{-0.48} \text{ cm}^{-1}, \quad N_0 = 3.8 \times 10^3 R^{-0.87} m^{-3} \text{ mm}^{-1}, \quad [1b] \)

and D is the equivalent diameter of the water drop to which the ice crystal aggregate melts (i.e., equivalent melted drop diameter) and R is the rate of precipitation in mm h\(^{-1}\) of liquid water

- Variety of snow and snowflake types, including aggregates of plate, columns and dendrites

- Note typo error in units of \(\Lambda \) in Pruppacher and Klett (1997)

- Sekhon and Srivastava (1970) found similar form as [1a] in snow except different equations for \(\Lambda, N_0 \) in [1b]

 - \(\Lambda = 22.9 R^{-0.45} \text{ cm}^{-1} \)
 - \(N_0 = 2.50 \times 10^3 R^{-0.94} \text{ mm}^{-1} \text{ m}^{-3} \)

- SS70 also derive several useful relationships for snow

 - Median volume diameter: \(D_0 = 0.14 R^{0.45} \text{ (cm)} \)
 - Liquid water content \(W = 0.250 R^{0.86} \text{ (g m}^{-3}\)
 - Reflectivity: \(Z = 1780 R^{2.21} \text{ (mm}^6 \text{ m}^{-3}\)

Gunn and Marshall (1958)
5.3 Snow crystal and snowflake density

- Most ice crystals, and all aggregates of ice crystals, have a bulk density less than that of solid ice (0.916 g cm\(^{-3}\))
 - Small amounts of air in capillary spaces of single crystals (e.g. hollow columns)
 - Tendency of single snow crystals to grow in skeletal fashion (e.g., dendrites)
 - Obvious air gaps when multiple snow crystals aggregate

For most snow crystal types, increasing size implies decreasing bulk ice density

TABLE 2.3

Bulk density of various snow crystals (\(d\) and \(L\) in mm). (Based on data of Heymsfield, 1972.)

<table>
<thead>
<tr>
<th>Crystal type</th>
<th>Bulk Density, (\rho_c), (g cm(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>hexagonal plate</td>
<td>(\rho_c = 0.9)</td>
</tr>
<tr>
<td>plates with dendritic extensions</td>
<td>(\rho_c = 0.656 \ d^{-0.627})</td>
</tr>
<tr>
<td>dendrites</td>
<td>(\rho_c = 0.588 \ d^{-0.377})</td>
</tr>
<tr>
<td>stellar, broad arms</td>
<td>(\rho_c = 0.588 \ d^{-0.377})</td>
</tr>
<tr>
<td>stellar, narrow arms</td>
<td>(\rho_c = 0.46 \ d^{-0.482})</td>
</tr>
<tr>
<td>column, cold region</td>
<td>(\rho_c = 0.65 \ L^{-0.0915})</td>
</tr>
<tr>
<td>column, warm region</td>
<td>(\rho_c = 0.848 \ L^{-0.014})</td>
</tr>
<tr>
<td>bullet</td>
<td>(\rho_c = 0.78 \ L^{-0.0038})</td>
</tr>
</tbody>
</table>

Pruppacher and Klett (1997)
From Heymsfield (1972)
Integrated bulk density and size/aspect ratio information for various *snow crystal types*

For plates and dendrites

\[
\rho = a_1 D^c \quad [3a]
\]

\[
h = a_2 D^f \quad [3b]
\]

\(\rho\): bulk ice density (g cm\(^{-3}\))

\(D\): crystal diameter (cm) (major dimension)

\(h\): crystal thickness (cm) (minor dimension)

For columns, needles, and bullets

\[
\rho = a_1 L^c \quad [4a]
\]

\[
d = a_2 L^f \quad [4b]
\]

\(\rho\): bulk ice density (g cm\(^{-3}\))

\(D\): crystal length (cm) (major dimension)

\(d\): crystal thickness (cm) (minor dimension)

Coefficients in table below (Matrosov et al. 1996)

February 1996

Matrosov et al.

<table>
<thead>
<tr>
<th>Crystal class</th>
<th>(a_2)</th>
<th>(f)</th>
<th>(a_1)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dendrites, P1e</td>
<td>0.009</td>
<td>0.377</td>
<td>0.25</td>
<td>-0.377</td>
</tr>
<tr>
<td>Solid thick plates, C1g</td>
<td>0.138</td>
<td>0.778</td>
<td>0.916</td>
<td>0.0</td>
</tr>
<tr>
<td>Hexagonal plates, P1a</td>
<td>0.014</td>
<td>0.474</td>
<td>0.916</td>
<td>0.0</td>
</tr>
<tr>
<td>Solid columns, Cle ((L/d \leq 2))</td>
<td>0.578</td>
<td>0.958</td>
<td>0.916</td>
<td>0.0</td>
</tr>
<tr>
<td>Solid columns, Cle ((L/d > 2))</td>
<td>0.260</td>
<td>0.927</td>
<td>0.916</td>
<td>0.0</td>
</tr>
<tr>
<td>Hollow columns, Cif ((L/d \leq 2))</td>
<td>0.422</td>
<td>0.892</td>
<td>0.53</td>
<td>-0.092 cold region</td>
</tr>
<tr>
<td>Hollow columns, Cif ((L/d > 2))</td>
<td>0.263</td>
<td>0.930</td>
<td>0.53</td>
<td>-0.014 warm region</td>
</tr>
<tr>
<td>Long solid columns, N1e</td>
<td>0.035</td>
<td>0.437</td>
<td>0.916</td>
<td>0.0</td>
</tr>
<tr>
<td>Solid bullets, Cle ((L \leq 0.03 \text{ cm}))</td>
<td>0.153</td>
<td>0.786</td>
<td>0.916</td>
<td>0.0</td>
</tr>
<tr>
<td>Hollow bullets, Cld ((L > 0.03 \text{ cm}))</td>
<td>0.063</td>
<td>0.532</td>
<td>0.77</td>
<td>-0.0038</td>
</tr>
<tr>
<td>Elementary needles, Nla ((L < 0.05 \text{ cm}))</td>
<td>0.030</td>
<td>0.611</td>
<td>0.916</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Matrosov et al. (1996) from various sources in caption.
• **Bulk density of snow aggregate** \((\rho, \text{ g cm}^{-3})\) as function of aggregate diameter \((D, \text{ cm})\) (or major dimension) was provided by Passarelli and Srivastava (1979) based on Magono and Nakamura (1965) data

\[
\rho = 0.015D^{-0.6} \text{ [g cm}^{-3}\text{]} \quad [5]
\]

• Illingworth (1994), Matrosov et al. (1996) and Ryzhkov et al. (1998) recommend relationship for **bulk density of snow aggregates** \((\rho, \text{ g cm}^{-3})\) in terms of the ice particle major dimension \(S\) (mm) (note units!)

\[
\begin{align*}
\text{if } (S < 0.097 \text{ mm}) \text{ then } & \quad [6] \\
\rho &= 0.916 \text{ g cm}^{-3} \\
\text{else} & \\
\rho &= 0.07S^{-1.1} \text{ g cm}^{-3} \\
\text{endif}
\end{align*}
\]

• Equations [5] and [6] are in OK agreement for major dimension > 1 mm. Likely large variability in bulk ice density of aggregates under differing conditions
5.4 Snow crystal and snowflake orientation and refractive index

- In radar studies, usually assume major dimension of ice crystal or aggregate is in the **horizontal unless there is a strong electric field**, in which case ice particle is aligned with electric field, which is usually assumed strongest in **vertical** (Weinheimer and Few 1987)
- For dry ice particles (i.e., not in wet growth or melting), the refractive index is calculated with Debye theory using the bulk density of ice from earlier section. Recall...
- Use Debye mixing theory, Debye (1929), for ice and air mixtures (e.g., Battan 1973)

\[
\frac{K}{\rho} M = \frac{K_i}{\rho_i} M_i + \frac{K_a}{\rho_a} M_a \quad [7]
\]

\[
K = \frac{m^2 - 1}{m^2 + 2} \quad [8]
\]

- Where M: mass, \(\rho\): density, m: refractive index; subscript i=ice (solid) and a=air (no subscript=mixture or bulk ice density)
- Can simplify [7] by noting that \(m_a\) in [8] is \(\approx 1\) so \(K_a \approx 0\) and \(M \approx M_i \therefore \rightarrow K/\rho\) is constant. Hence, \(K\) for mixture is

\[
K = \left(\frac{K_i}{\rho_i}\right) \rho \quad [9]
\]

- Combine [4] and [5] to solve for refractive index of mixture (m)

\[
m^2 = \frac{2 \chi + 1}{1 - \chi} \quad \text{where} \quad \chi = \left(\frac{K_i}{\rho_i}\right) \rho \quad [10]
\]
5.5 Some basic polarimetric radar signatures of ice crystals and aggregates

- Employ the size, shape, density and orientation assumptions to look at some typical polarimetric radar quantities of ice crystals and aggregates

- Ice Crystal Type: **Hexagonal Plates (P1a)**
- PSD: Exponential
 - \(N(D) = N_0 \exp(-3.67D/D_0) \)
 - \(2 \times 10^5 \text{ m}^{-3} \text{ cm}^{-1} \leq N_0 \leq 2 \times 10^6 \text{ m}^{-3} \text{ cm}^{-1} \)
 - \(0.03 \leq D_0 \leq 0.07 \text{ cm} \ (D_{\text{max}} = 0.11 \text{ cm}) \)
- Shape: Model as Oblate Spheroid
 - \(a/b \) (minor:major): Auer and Veal (1970)
- Ice Density: Heymsfield (1972)
- Ice Orientation: Gaussian with mean in **horizontal** (0°) and varying standard deviation (0°, 30°)
- Radar Scattering and Propagation Model
 - T-matrix for oblate (e.g., Bringi and Chandrasekar 2001)
 - Mueller matrix for hydrometeor mixtures, PSD, canting, radar elevation angle etc (Vivekanandan et al. 1991)
 - C-band (5.5625 GHz, 5.33 cm)
 - 0° elevation angle
• Ice Crystal Type: **Columns (C1f, hollow, elongated, warm)**

• PSD: Exponential
 – \(N(D) = N_0 \exp(-3.67D/D_0) \)
 – \(2 \times 10^5 \text{m}^{-3} \text{cm}^{-1} \leq N_0 \leq 2 \times 10^6 \text{m}^{-3} \text{cm}^{-1} \)
 – \(0.03 \leq D_0 \leq 0.07 \text{cm} \) (\(D_{\text{max}} = 0.11 \text{cm} \))

• Shape: Model as Oblate Spheroid
 – \(a/b \) (minor:major): Auer and Veal (1970)

• Ice Density: Heymsfield (1972)

• Ice Orientation: Gaussian with mean in **horizontal** (0°) and varying standard deviation (0°, 30°)

• Radar Scattering and Propagation Model
 – T-matrix for oblate (e.g., Bringi and Chandrasekar 2001)
 – Mueller matrix for hydrometeor mixtures, PSD, canting, radar elevation angle etc (Vivekanandan et al. 1991)
 – **C-band (5.5625 GHz, 5.33 cm)**
 – 0° elevation angle

• **Z_{dr}** and **K_{dp}** for columns less than for plates. Why?
• How are **Z_{dr}** and **K_{dp}** related to \(N_0 \) and \(D_0 \)? More later…
- **Ice aggregates** (oblate), exponential PSD
 - \(N(D) = N_0 \times \exp(-3.67 \frac{D}{D_0}) \)
 - \(1 \times 10^4 \text{ m}^{-3} \text{ cm}^{-1} \leq N_0 \leq 1 \times 10^5 \text{ m}^{-3} \text{ cm}^{-1} \)
 - \(0.3 \leq D_0 \leq 0.7 \text{ cm} \quad (D_{\text{max}} = 1.5 \text{ cm}) \)
- **Ice density**: Illingworth (1994)
- **Shape**: \(a/b = 0.3 \) or 0.8
- **Orientation**: Gaussian distribution of ice particle canting angles
 - Mean: Horizontal (0°)
 - \(\sigma \) (std dev) canting angle was set at 5° (slight) or 30° (moderate).
- **Radar Scattering and Propagation Model**
 - T-matrix for oblate (e.g., Bringi and Chandrasekar 2001)
 - Mueller matrix for hydrometeor mixtures, PSD, canting, radar elevation angle etc (Vivekanandan et al. 1991)
 - C-band (5.5625 GHz, 5.33 cm)
 - 0° elevation angle

- More oblate \((a/b=0.3) \) and less canted \((\sigma=5°) \) particles have larger signatures.
- \(K_{dp} \) and \(Z_{dr} \) responses to H- or V-oriented low density aggregates are significantly less than most pristine ice crystals (primarily because of low density). Shape and orientation secondary.
K\textsubscript{dp} and Z\textsubscript{dr} Dependence on Mean Ice Particle Canting Angle

- Example: Plate (oblate spheroid), C-band
 - N\textsubscript{0} = 2\times10^6\text{m}^{-3}\text{ cm}^{-1}
 - D\textsubscript{0} = 0.07 cm
- Lack of mirror symmetry of radar parameters about 45° mean canting angle (e.g., Zdr/Kdp at 0° vs. 90°) related to random orientation of oblate in 2nd angular (\(\phi\)) direction.
 - Reasonable at low elevation angle since ice would have no preferred orientation in this direction unless there is a strong horizontal field providing a preferred orientation.
- Electric Field (E-field) strength, particle size, particle shape, and particle density (among other ice properties) will determine mean canting angle.
 - Weinheimer and Few (1987)
 - More later...

K\textsubscript{dp} and Z\textsubscript{dr} are function of mean canting angle, which will depend on Electric field.
K\textsubscript{dp} and Z\textsubscript{dr} Dependence on Radar Elevation Angle

- Ice Crystal Example: Plate (oblate), C-band
 - N\textsubscript{0} = 2\times106 m-3 cm-1
 - D\textsubscript{0} = 0.07 cm
 - Vertically Oriented (90°)

- Ice orientation signatures in dual-polarimetric variables are insensitive to radar elevation angle up to about 15°
 - Decrease in magnitude of ice orientation signatures above 15° is apparent and could have an impact on even qualitative inferences, especially with weak signatures.
 - Consistent with well known results in radar community (e.g., associated with rain studies).

Dual-pol, including ice orientation signatures, insensitive to changes in radar elevation angle up to 15°.