UTLS and STE: A Review with a Tropospheric Perspective

(and maybe a little TOLNet bias)

Andrew O. Langford NOAA/ESRL/CSD TOLNet/NDAAC 2018 meeting Huntsville, AL 7-11 May 2018

Stratosphere-troposphere transport (STT)

"To be as consistent as possible with previous nomenclature while removing ambiguities, we propose that STE should refer to exchange in both directions in the most general sense, whereas **stratosphere-to-troposphere transport (STT)** and troposphere-to-stratosphere transport (TST) should be used to refer specifically to one-way transport."

Andreas Stohl STACCATO 2003

Outline

- How much does STT contribute to free tropospheric O₃?
- What physical processes are responsible?
- How have ozone lidars advanced out knowledge?
- Does STT significantly impact surface air quality?

How much does STT contribute to free tropospheric O_3 ?

The Classical view...

Before 1970: Nearly all free tropospheric ozone thought to originate in the lower stratosphere

Stratospheric influx balanced by surface deposition

Examples of high surface ozone attributed to stratospheric intrusions during the 1970s

Case No.	Date	Geographic location	Ground-level O ₃ concentration (ppb)	Duration of observed event	Length of data record examined	Source
1	3 March 1964	Quincy, Florida (near Tallahassee)	100-300	3 h	July 1963–July 1973	Davis and Jensen (1976)
* 2	26 February 1971	Observatory Hohenpeissenberg (1000 m MSL), SW of Munich, Germany	415 250	10 min 50 min	Dec. 1970-May 1971	Atmannspacher and Hartmannsgruber (1973)
3	19 November 1972	Santa Rosa, California	200-230	1 h	November 1972	Lamb (1977)
4	6 March 1974	Harwell, Oxon, U.K.	110-115	2 h	4-5 y discontinuous	Derwent et al. (1978)
5	8/9 January 1975	Zugspitze Mountain near Garmisch- Partenkirchen, Germany (3000 m MSL)	160-193	4 h	Aug. 1973-Feb. 1976	Singh et al., (1980)
9	11, 12 July 1975	Whiteface Mountain, New York (1500 m MSL)	≤ 37	24 h av.	July 1975	Husain et al. (1977)
4	19 March 1977	Sibton, Suffolk, U.K.	100-110	2 h	4-5 y discontinuous	Derwent et al. (1978)
10	24, 25, 28 June and 1 July 1977	Whiteface Mountain, New York	≤ 47	24 h av.	June and July 1977	Dutkiewicz and Husain, (1979)
6	4 March 1978	Denver, Colorado	82	1 h	1975-1978	Haagenson et al. (1981)
7	July 1978	Pierre, South Dakota	≤ 56 ≤ 46	1 h 24 h av.	July-September 1978	Kelly et al. (1981)
8	15 March 1978	Kisatchie National Forest, Louisiana	100-105	2 h	Spring 1978	Viezee et al. (1982)

Table 4. Published episodes of stratospheric O3 transport to ground level

*Feb 1971

Altmannspacher

415 ppbv O₃ (10 min)

1983

From Viezee and Johnson

The 1970s: The great transport vs photochemical control debate

1970	Junge	Tropospheric O₃ controlled by transport
1971	Galbally	Photochemical production in rural areas too.
1973 1974	Chameides and Walker Crutzen	Photochemical production globally important.
1974	Fabian	Observations don't support your models.
1976	Chatfield and Harrison	and here are more reasons why they don't!
1977	Fishman and Crutzen	Here's a new model supporting photochemistry.
1977	Fabian and Pruchniewicz	Here are more observations disproving it.
1977	Chameides and Stedman	Our model says that both are important.
1978	Fishman and Crutzen	And here's an even better model
1979	Fishman, Solomon, and Crutzen	and some observations supporting it.
1980	Liu et al.	Tropospheric O ₃ controlled by photochemistry

The Current View: Net contributions similar

The Royal Society, 2008 , Ground-level ozone in the 21st century,

IPCC Fourth Assessment Report Working Group, "The Physical Basis"

What physical processes contribute to STT?

Poleward transport by the Brewer-Dobson Circulation followed by:

•	Tropopause folding	Reed/Danielsen	1958
•	Jet stream turbulence	Shapiro	1978
•	Erosion of cutoff lows	Bamber et al.	1984
•	Thunderstorms	Dickerson et al.	1987
•	Gravity wave breaking	Lamarque/Langford	1996
•	Kelvin wave breaking/MJO	Fuijiwara et al.	1998

What physical processes contribute to STT?

Poleward transport by the Brewer-Dobson Circulation followed by:

•	Tropopause folding	Reed/Danielsen	1958
•	Jet stream turbulence	Shapiro	1978
•	Erosion of cutoff lows	Bamber et al.	1984
•	Thunderstorms	Dickerson et al.	1987
•	Gravity wave breaking	Lamarque/Langford	1996
•	Kelvin wave breaking/MJO	Fuijiwara et al.	1998

Most STT a result of tropopause folding

Early STT research motivated by concerns about radioactive fallout from stratospheric testing

Localized acceleration of jet stream (i.e. jet streak) during cyclogenesis forces tongue of lower stratospheric air into the upper troposphere beneath the jet.

Based on high altitude sampling by WB-50 and RB-57 aircraft

Schematic view of tropopause fold (Danielsen 1964)

Project Springfield Report (1964)

First lidar measurements of ozone within a tropopause fold (Browell et al. 1987)

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 92, NO. D2, PAGES 2112-2120, FEBRUARY 20, 1987

NASA Airborne lidar measurements of stratospheric intrusion over Las Vegas

25 years of ground-based lidar TF measurements

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 96, NO. D12, PAGES 22,401-22,421, DECEMBER 20, 1991

France

Ground-Based Lidar Studies of Ozone Exchanges Between the Stratosphere and the Troposphere

G. Ancellet, J. Pelon, M. Beekmann, A. Papayannis, and G. Megie

Service d'Aéronomie du CNRS, Université Paris, France

15 JANUARY 1999

EISELE ET AL

1991

319

Germany

High-Resolution Lidar Measurements of Stratosphere-Troposphere Exchange

H. EISELE, H. E. SCHEEL, R. SLADKOVIC, AND T. TRICKL

Fraunhofer-Institut für Atmosphärische Umweltforschung, Garmisch-Partenkirchen, Germany

(Manuscript received 17 July 1997, in final form 31 March 1998)

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D12, 8527, doi:10.1029/2002JD002596, 2003

Greece

Observations of stratosphere-to-troposphere transport events over the eastern Mediterranean using a ground-based lidar system

E. Galani,¹ D. Balis,¹ P. Zanis,¹ C. Zerefos,¹ A. Papayannis,²
 H. Wernli,³ and E. Gerasopoulos⁴
 Received 30 May 2002; revised 6 October 2002; accepted 13 December 2002; published 6 May 2003.

2003

1999

Nevada (TOLNet)

An overview of the 2013 Las Vegas Ozone Study (LVOS): Impact of stratospheric intrusions and long-range transport on surface air quality

A.O. Langford ^{a, *}, C.J. Senff ^{a, b}, R.J. Alvarez II ^a, J. Brioude ^{a, b, c}, O.R. Cooper ^{a, b}, J.S. Holloway ^{a, b}, M.Y. Lin ^{d, e}, R.D. Marchbanks ^{a, b}, R.B. Pierce ^f, S.P. Sandberg ^a, A.M. Weickmann ^{a, b}, E.J. Williams ^a **2015** GEOPHYSICAL RESEARCH LETTERS, VOL. 23, NO. 18, PAGES 2501-2504, SEPTEMBER 1, 1996

Colorado

Ozone measurements in a tropopause fold associated with a cut-off low system

A. O. Langford, C. D. Masters¹, M. H. Proffitt¹, E.-Y. Hsie¹, and A. F. Tuck NOAA Aeronomy Laboratory, Boulder, Colorado 80303

Journal of Atmospheric Chemistry **38**: 295–315, 2001. © 2001 Kluwer Academic Publishers. Printed in the Netherlands.

Wales

Observations of Streamers in the Troposphere and Stratosphere Using Ozone Lidar

G. VAUGHAN, F. M. O'CONNOR and D. P. WAREING Department of Physics, University of Wales, Aberystwyth, U.K.

(Received: 7 June 1999; accepted: 9 August 2000)

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, D18305, doi:10.1029/2012JD017695, 2012

Alabama (TOLNet)

Stratosphere-to-troposphere transport revealed by ground-based lidar and ozonesonde at a midlatitude site

Shi Kuang, 1 M. J. Newchurch, 1 John Burris, 2 Lihua Wang, 1 Kevin Knupp, 1 and Guanyu Huang 1

Received 27 February 2012; revised 3 August 2012; accepted 14 August 2012; published 21 September 2012.

Colorado (TOLNet)

Characterizing the lifetime and occurrence of stratospherictropospheric exchange events in the rocky mountain region using high-resolution ozone measurements

John T. Sullivan^{1,2}, Thomas J. McGee¹, Anne M. Thompson³, R. Bradley Pierce⁴, Grant K. Sumnicht⁵, Laurence W. Twigg⁵, Edwin Eloranta⁶, and Raymond M. Hoff^{7,8}

2016

1996

2001

2012

295

Tropopause folds 101

- Primarily develop during cyclogenesis (spin up or reintensification of midlatitude cyclones).
- Occur year round, but most common fall-to-spring.
- Greatest impact on tropospheric O₃ in springtime (more O₃ in the lower stratosphere).
- ENSO creates interannual variability by shifting jet stream north or south.
- Most are dissipated in the free troposphere and add to regional and hemispheric background.
- Deep intrusions (i.e. <3 km) may affect surface concentrations.

Tropopause folds 101

- Primarily develop during cyclogenesis (spin up or reintensification of midlatitude cyclones).
- Occur year round, but most common fall-to-spring.
- Greatest impact on tropospheric O₃ in springtime (more O₃ in the lower stratosphere).
- ENSO creates interannual variability by shifting jet stream north or south.
- Most are dissipated in the free troposphere and add to regional and hemispheric background.
- Deep intrusions (i.e. <3 km) may affect surface concentrations.

How does UTLS air get to the surface?

Johnson and Viezee

Atmos. Environ.

How much does STT impact surface O_3 in U.S.?

2001	Lefohn et al.	Frequent occurrences of 50–60 ppbv at remote northern U.S. sites in spring are of stratospheric origin, implying that current O_3 standard (0.08 ppmv) may be unattainable.
2002/3	Fiore et al.	GEOS-Chem model shows stratospheric contribution to surface O_3 is <2 ppbv in summer and always \leq 20 ppbv.
2009	Langford et al.	Exceedances of the 85 ppbv NAAQS directly caused by descent of UTLS air to the surface in Denver (May 1999).
2012	Lin et al.	GFDL-AM3 model shows 22±12 ppbv <i>mean</i> stratospheric contributions in Western U.S. during spring
2014	Zhang et al.	Updated GEOS-Chem model shows 8-10 ppbv in Western U.S. during spring
2015	Langford et al.	Stratospheric intrusions cause 3 exceedances of the 75 ppbv NAAQS in Las Vegas during LVOS (May - June 2013).

Potential impact of STT on Air Quality has increased

...as the primary O₃ NAAQS has decreased

In 1971, the U.S. Environmental Protection Agency (EPA) promulgated **National Ambient Air Quality Standards (NAAQS)** to protect the public health and welfare from adverse effects of photochemical oxidants.

1971	0.08 ppmv (85 ppbv)	1-h
1979	0.12 ppmv (125 ppbv)	1-h
1997	0.08 ppmv (85 ppbv)	8-h
2008	0.075 ppmv (75 ppbv)	8-h
2015	0.070 ppmv (70 ppbv)	8-h

Compliance based on the 3-y average of the 4th highest MDA8* (Design Value)

*Exceptional Events Rule can be invoked to exclude high values caused by stratospheric intrusions, wildfires, or other factors outside of local control

Other ways stratospheric intrusions can affect surface ozone

- Transport O_3 -rich air directly from the UTLS to the surface (Colorado).
- Transport O₃-rich air from the UTLS to the lower free troposphere followed by boundary layer entrainment (Las Vegas).
- Transport O_3 -rich pollution plumes mingled with the dry airstream (Las Vegas).
- Allow locally-produced O₃ to accumulate by capping the mixed layer (Las Vegas, Houston).
- Create strong, dry winds that foster the spread of wildfires and associated O₃ production (Los Angeles, Las Vegas).
- Transport O_3 -rich air directly from the UTLS to the surface in polluted areas (Los Angeles, San Joaquin Valley).
- Redistribute locally-formed O₃ by reinforcing or cancelling local circulation patterns (Sacramento Valley).

Extras

Extras

Stratospheric influx balanced by surface deposition (Junge 1962)

The classical view

Some History...

1992	Follows and Austin	O_3 originating in the stratosphere composes less than 5% of zonally averaged O_3 near the surface.
2001	Lefohn et al.	frequent occurrences of 50–60 ppbv at remote northern U.S. sites in spring are of stratospheric origin, implying that current O_3 standard (0.08 ppmv) may be unattainable.
2002	Fiore et al.	GEOS-Chem model estimates stratospheric contribution to surface O_3 is <2 ppbv in summer.
2003	Fiore et al.	GEOS-Chem model estimates stratospheric contribution to surface O_3 is usually <10 ppbv and always <20 ppbv.

Net photochemical production and stratospheric influx similar (2008)

The Royal Society, 2008 , Ground-level ozone in the 21st century,

IPCC Fourth Assessment Report Working Group, "The Physical Basis"

In the beginning...

Schönbein 1840

Ozone (from ozein, Greek for "to smell")

In the beginning...

Schönbein 1840

It has commonly been assumed that almost all of the ozone in the troposphere is of stratospheric origin, that no significant production or destruction of ozone can take place within the troposphere, and that ozone is destroyed mainly by contact with the material of the earth's surface. (Crutzen 1974)

Stratosphere-to-Troposphere Transport (STT) by tropopause folding

Tongue of dry, ozone-rich UTLS air with high static stability

Stratosphere-to-Troposphere Transport (STT) by tropopause folding

Tongue of dry, ozone-rich UTLS air with high static stability

Stratosphere-troposphere transport (STT)

"To be as consistent as possible with previous nomenclature while removing ambiguities, we propose that STE should refer to exchange in both directions in the most general sense, whereas **stratosphere-to-troposphere transport (STT)** and troposphere-to-stratosphere transport (TST) should be used to refer specifically to one-way transport."

Stratosphere-troposphere exchange: A review, and what we have learned from STACCATO

A. Stohl,¹ P. Bonasoni,² P. Cristofanelli,² W. Collins,³ J. Feichter,⁴ A. Frank,⁵ C. Forster,¹
E. Gerasopoulos,⁶ H. Gäggeler,⁷ P. James,¹ T. Kentarchos,⁸ H. Kromp-Kolb,⁵ B. Krüger,⁵
C. Land,⁴ J. Meloen,⁹ A. Papayannis,¹⁰ A. Priller,¹¹ P. Seibert,⁵ M. Sprenger,¹²
G. J. Roelofs,⁸ H. E. Scheel,¹³ C. Schnabel,⁷ P. Siegmund,⁹ L. Tobler,⁷ T. Trickl,¹³
H. Wernli,¹² V. Wirth,¹⁴ P. Zanis,⁶ and C. Zerefos⁶

Received 29 April 2002; revised 13 December 2002; accepted 14 January 2003; published 10 May 2003.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D12, 8516, doi:10.1029/2002JD002490, 2003

Examples of high ozone attributed to UTLS air reaching the surface

1973	Altmannspacher and Hartmanngruber	415 ppbv O ₃ (10 min)	Hohenpeissenberg (1 km asl)
1977	Lamb	200-230 ppbv (1-h)	Santa Rosa, CA (0 km asl)
1981	Haagenson et al.	>200 ppbv of O_3	Denver, CO (1.6 km asl)