
Formation and Growth of Ice Crystals
(Ch. 9 of R&Y)

• The growth process:
– Ice nucleation
– Growth by diffusion (deposition)
– Growth by collection

• Riming
• Aggregation

• Physics are complicated by the many types
of ice particles

– Pristine ice of various habits
– Snow flakes
– Aggregates (of snowflakes & other ice particles)
– Graupel
– Hail



A review of where we are on this topic

Representation of “paths to precipitation”

Cloud
droplets

Water
vapor

Nucleation
Growth by diffusion

We considered in Chaps. 7-8:

Growth by collection

Raindrops
(d = 0.1-6 mm)

Rain

Fallout



Probability of ice in clouds (review)

Percentage chance of ice being detected in clouds as a function of the cloud top
temperature.  Based on observations of 30 orographic cloud systems.  Fig. taken from
Wallace and Hobbs (1977).

100%

50%

Threshold for ice
-4 C

T < -17 °C



Ice Nucleation
(4 types)

Homogeneous nucleation at
T = -40 °C.

Good ice nuclei have a surface
or substrate that often has an
ice-like crystalline structure.

Relative importance of the four
mechanisms is not well
established.  However, see the
following frame.



Efficient pathways for ice nucleation in clouds

Nucleus
type

Nucleation
process

Ice particle
produced



How does theory compare with observations?
Fletcher theory:

ln NIN = a(T1 - T)

NIN = exp[a(T1-T)]
T1 = -20 °C

observations

Concentrations of ice particles
in clouds vs cloud top
temperature.  Taken from
Wallace and Hobbs, Fig. 4.30.

Above relation states that N
increases by 10 for every 4 °C
decrease in temperature.

100-28
10-24
1-20
NIN (per liter)T (°C)



Ice-forming temperatures
of pure and natural
substances.

Some combination of
lattice matching and
molecular binding, and low
interfacial energy with ice
accounts for the nucleating
ability of a substance.

Not well explained by
theory.

Effective natural nuclei:

- Kaolinite

- Bacteria?

Effective artificial nucleus:

- AgI (cloud seeding agent)

Ice nuclei



More observations on ice in clouds
Secondary ice production leads to greater ice concentration

Fig. 9.2.  Summary of observed
ice particle concentrations for
clouds in which secondary
processes of ice nucleation are
believed to be unimportant.

Colder clouds have greater ice
concentrations.

Measured concentrations
exceed that predicted by the
Fletcher theory (in many
clouds)

Fletcher relation



Secondary ice production (ice multiplication)
mechanisms:

• Fracture of ice (delicate) crystals
• Shattering or splintering of freezing raindrops
• Hallett-Mossop ice multiplication mechanism (rime

splintering) based on observations.
• Hallet-Mossop criteria are:

– Cloud droplet diameter > 25 µm
– -8 °C < T < -3 °C
– Presence of riming (implies that supercooled water and some ice

are present)



Ice multiplication explains why the observed ice
concentration far exceeds the Fletcher theoretical value

Fletcher theory:

ln NIN = a(T1 - T)

NIN = exp[a(T1-T)]
T1 = -20 °C

observations

Concentrations of ice particles
in clouds vs cloud top
temperature.  Taken from
Wallace and Hobbs, Fig. 4.30.

Above relation states that N
increases by 10 for every 4 °C
decrease in temperature.

Ice
multiplication



Diffusional growth of ice crystals:
similarity to diffusional growth of cloud droplets

• New definition of
supersaturation w.r.t. ice:
Si = e/ei = (e/es)(es/ei) =
S(es/ei)

• ∴ Si can potentially attain
high levels if the air is
saturated w.r.t. water.

Supersaturation relative to ice of air at
equilibrium saturation over water.

T = -15 °C

(Si-1) = 15%



Growth equations

• Similarities and differences to condensational growth of
water droplets.

• Mass rate of growth of diffusion:
dm/dt = 4πCD(ρv-ρvr)

• Here C is the “electrical capacitance” (length units) that
is a function of size and shape of the ice particle.

• Discuss the values of C for different crystal habits.
• This forces us to divert to a discussion of crystal habits.



Crystal habits
• Dependence on T

and Si

• Basic types of ice
crystals: column,
plate, dendrite

T (C) Habit Types of crystal at
slight water
supersaturation

0 to -4     platelike thin hexagonal plates

-4 to -10 prismlike Needles (-4 to -6 C)

Hollow colums (-5 to -10)

-10,-22 platelike sector plates (-10 to -12)

dendrites (-12 to -16)

sector plates (-16 to -22)

-22, -50 prismlike hollow columns

Temperature dependence only



Added complexities from ice supersaturation, Si

(Temperature and Si-1 dependence)

Fig 9.6, R&Y



Simple crystal habits as a function of T and Si.  These represent habits attained by
large ice crystals.  The vapor density excess for water saturation at 1000, 700, and
500 mb are shown to illustrate the variation with altitude.  Taken from Fig. 6.2 of
Young (1993).

Water saturation



Examples of ice crystal habits

Examples of ice crystals which have grown from the vapor phase: (a)
hexagonal plates, (b) column, (c) dendrite, and (d) sector plate.  Taken from
Fig. 4.32 of Wallace and Hobbs (1977).



Examples of a-axis growth regime ice crystals
(left), and c-axis growth regime crystals (right
and below).  Taken from Figs. 6.3 and 6.4 of
Young (1993).

a-axis

c-axis



Excellent information and pictures
at this site

• http://www.its.caltech.edu/~atomic/snowcrystals/class/class.htm

I expect you to study the information at this site!



Stellar dendrites

Role in:
a) Ice multiplication via ice crystal fracture
b) Aggregation



Sectored plates



Needles



Spatial dendrites



Capped columns



Rimed crystals
(presence of supercooled cloud droplets)



More on growth equations
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Integration of the growth equation (9.2, R&Y)*
Mass of a crystal with bulk density ρx:  

For a constant aspect ratio Γ the differential of the above is:  daadm
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In the above, growth rate is large for small bulk density ρx and aspect ratio Γ

Examples for plate growing at constant thickness, and needle growing at
constant diameter

*Taken from Young (1993), Ch. 6



Now we consider a plate crystal expanding at constant thickness

Integration from an initial size a0 gives

For very small crystal sizes, the mass as a function of time is
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Thus, a crystal growing at constant thickness grows at a faster rate
(t2) than one growing at constant aspect ratio (t3/2)



Eq. (9.4): Growth equation

DTe

TR

KT

L

TR

L

SC

dt

dM

si

vs

v

s

i

)(
1

)1(4

+!!
"

#
$$
%

&
'

'
=

(

Same physics as in Eq. (7.17)

Simultaneous treatment of diffusion of vapor onto crystal, and diffusion of
heat (due to sublimation) away from cyrstal surface

Kinetic effects are not included.  Thus (9.4) will lead to an overestimate

Normalized growth rate (Fig. 9.4) is determined from the following
expression:
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Bergeron process
When ice crystals and (supercooled)
water droplets coexist, the ice
crystals grow (by deposition) while
the water droplets evaporate.

Why?

The equilibrium saturation vapor
pressure over ice is less than that
over water.

For continued growth, water
droplets need to be re-nucleated or
their size must be maintained by
condensational growth, which
implies (S-1) > 0 (and Si-1 is large!).



Results

Normalized ice crystal growth rate as a function of temperature.
(Fig. 9.4 from RY)

A maximum in growth rate (dm/dt) near -15 °C



Flux lines around a plate crystal in two dimensions (based on electrolytic
tank experiments).  Fig. 6.8 from Young (1993)

But, the growth on the ice crystal is not symmetric as shown below



Aside: Ice structure

http://www.its.caltech.edu/~atomic/snowcrystals/ice/ice.htm



Predicted crystal mass after times annotated of growth at water saturation
and constant ambient temperature.  Fig. 6.9 of Young (1993)

Some calculations



Predicted crystal semi-dimensions after 120 s of growth at water saturation.  Fig.
6.10 from Young (1993)

T = -15 °C (dendrites/plates)T = -5 °C (needles)



The ventilation factor does play a role in ice cyrstal growth



Ice crystal dimensions for
natural ice crystals for
various temperatures.  Note
that in all cases, the ice
crystals tend to grow with a
constant aspect ratio until
they reach a limiting
dimension (several tens of
microns).  [Fig. 6.5 from
Young 1993, after Ono
1970).

Dendrites/plates

needles



(Young 1993)

Ice density
Important for:

a) Terminal fall speed relations

b) Interpretation of radar reflectivity

c) Role in rate of mass growth

Ice density tends to decrease as
the ice crystal grows.



Predicted crystal density after 60 s growth at water saturation.  Fig. 6.11 of
Young (1993)

Ice crystal density as a function of temperature (habit)



Growth of ice particles by collection
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Collection equation for accretion
dNs/dt – rate at which water droplets are collected by
the ice particle
A – cross sectional area of ice particle
Eiw – collection efficiency
nw – concentration of water droplets
vi, vw – terminal fall speeds of ice and water droplets

Fall speeds are complicated, since ice crystals assume many habits (and ice density).
The Davies number is often used:
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Where m is mass, rc is the characteristic semi-dimension, A is cross sectional area
normal to the fall axis.
There are many forms of Reynolds number that utilize NDa.  See Young (1993), pp.
200-202 for more information.



Various degrees of riming of
ice particles.

(a) a lightly rimed needle

(b) Densely rimed column

(c) Densely rimed plate

(d) Densely rimed stellar

(e) Lump graupel

(f) Conical graupel

Fig. 4.33 from Wallace and
Hobbs 1977



Example of a conical graupel.  Fig. 8.1 from
Young 1993, adapted from Nakaya 1954.

Graupel represents an advanced
form of riming.  It is a common ice
particle in thunderstorms, and often
represents the embryo of hail stones.

Characteristic graupel size is several
mm (up to ~1 cm).



Riming
• Riming (accretion) is the counterpart to

collection (continuous or stochastic) of cloud
droplets by a raindrop.

• When a supercooled cloud droplet is touched by
a falling ice particle, the droplet freezes
instantaneously and sticks to the ice particle.
This occurs because nucleation of ice by ice
occurs for T < 0 °C.

• Important issues for this process:
– Terminal fall speed of ice particles
– Collision / collection efficiencies



Accretion equation (9.8)

• Growth of graupel (hail):
– m: mass of particle
– M: cloud water content
– R: equivalent radius of

particle
– u(R): terminal fall speed
– E: mean collection

efficiency
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Ice particle terminal fall speeds u(R) are complicated

• Shape factor
• Ice density
• Graupel has a variable

density, with a
characteristic value of
~0.5 g m-3

• Some ice particles have a
fall speed independent of
size

• The density correction
also applies to VT of ice
particles:
–          (ρ0/ρ)0.4

Fig. 9.7 from Rogers and Yau.



Collection Efficiency

Collection efficiency for thin plates collecting water
droplets, based on numerical simulations by Pitter and
Prupacher (1974), as a function of drop radius.  Plate
sizes are labeled in µm.  Fig. 8.2 from Young 1993.

Small droplets will tend to
evaporate and follow airflow
streamlines around the falling
ice particle.  Droplets < 1 µm in
size are not collected.

Collection efficiencies for
plates do not become large
until a diameter of 150-200 µm
is attained.  See Fig. on the
right.



Above: Trajectories of droplets interacting with the
relative airflow of a falling plate (a = 404 µm) as
described by numerical simulations of Pitter and
Pruppacher 1974.  In (a), the droplets have radius of
52 µm.  In (b), the droplets have radius of 52.5 µm.
Fig. 8.3 from Young 1993.

Right: Rime deposits on a plate crystal.  (a) side view.
(b) bottom view (the side on which the droplets were
captured).  Fig. 8.4 from Young.



Collection efficiencies for columns
collecting water droplets, based on
numerical simulation, as a function of
drop radius.  The smallest column (1)
of radius (a) 23.5 µm and aspect ratio
(Γ) of 1.43 does not collect a drop.
Size parameters are:

(2) 32.7 µm, Γ = 1.43

(3) 36.6 µm, Γ = 1.54

(4) 41.5 µm, Γ = 1.67

(5) 53.4, 2.22

(6) 77.2, 3.33

(7) 106.7, 5.0

(8) 146.4 µm, Γ = 8.33

Fig. 8.5 from Young 1993.



Growth of hail
Continuous growth equation
applies here.



Five observed hailstone growth
regimes as a function of liquid water
content and temperature.  The dotted
line represents the Schumann-Ludlam
limit.  Fig. 8.7 from Young 1993.



Growth of snow flakes: aggregation
Aggregation: the collision

and sticking of two or
more ice crystals.

Dependence on:

a) Temperature

b) Crystal habit
(dendrites are ideal)

Examples of aggregates: (a) densely rimed needles,
(b) rimed columns, (c) dendrites, and (d) rimed
raindrops.  Fig. 4.36 from Wallace and Hobbs 1977.

Physics:
a) Collisions
b) Sticking probability

uREM
dt

dm
!=
2"



Modified collection kernel for
aggregation is partitioned
into



Maximum dimensions of aggregates as
a function of T based on aircrafts
observations of Hobbs et al (1974).
Solid curve: median, dashed line:
largest aggregates.  Fig. 8.9 from
Young 1993.

Aggregation is a function of:

a) temperature, which influences the
“stickiness” of ice.  Maximum
between 0 and -5 °C.

b) Crystal habit (implicitly
temperature): Dendrites aggregate
more effectively because their
branches can become intertwined.

Maximum size

Median size



Snowflake density (dendrite aggregates) as a function of
diameter

Constant mass isochrone



Snow flake fall speed vs. diameter



Melting of ice, figs 8.13, 8.14







Snowflake size distribution
R&Y, pp. 180-183

Exponential size distribution, as for rain, works reasonably well:

N(D) = N0e-ΛD

Λ(cm-1) = 25.5R-0.48

N0 (cm-4) = 3.8 x 10-2 R-0.87



A review of where we are on this topic

Representation of “paths to precipitation”

Cloud
droplets

Water
vapor

Nucleation
Growth by diffusion

We considered in Chaps. 7-8:

Growth by collection

Raindrops
(d = 0.1-6 mm)

Rain

Fallout



Homework, RY Chap. 9:

1. 9.1

2. Sketch 3 possible paths to rain formation involving ice-
phase microphysics.  For each branch of the path, write
the relevant equation.

3. Examine the material at the web site
http://www.its.caltech.edu/~atomic/snowcrystals/class/class.htm


