
Convective cloud identification and classification in daytime satellite

imagery using standard deviation limited adaptive clustering

Todd A. Berendes,1,2 John R. Mecikalski,3 Wayne M. MacKenzie Jr.,2

Kristopher M. Bedka,4 and U. S. Nair2

Received 17 April 2008; revised 25 June 2008; accepted 9 July 2008; published 25 October 2008.

[1] This paper describes a statistical clustering approach toward the classification of cloud
types within meteorological satellite imagery, specifically, visible and infrared data.
The method is based on the Standard Deviation Limited Adaptive Clustering (SDLAC)
procedure, which has been used to classify a variety of features within both polar orbiting
and geostationary imagery, including land cover, volcanic ash, dust, and clouds of
various types. In this study, the focus is on classifying cumulus clouds of various types
(e.g., ‘‘fair weather, ’’towering, and newly glaciated cumulus, in addition to
cumulonimbus). The SDLAC algorithm is demonstrated by showing examples using
Geostationary Operational Environmental Satellite (GOES) 12, Meteosat Second
Generation’s (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI), and
the Moderate Resolution Infrared Spectrometer (MODIS). Results indicate that the method
performs well, classifying cumulus similarly between MODIS, SEVIRI, and GOES,
despite the obvious channel and resolution differences between these three sensors. The
SDLAC methodology has been used in several research activities related to convective
weather forecasting, which offers some proof of concept for its value.
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1. Introduction

[2] The main motivation for this paper is the develop-
ment, evaluation and application of a ‘‘cumulus cloud
mask’’ (CCM) as a means to isolate only cumulus clouds
in a given satellite scene. The approach used to develop the
CCM is a very flexible algorithm, and this is only one
potential application (with others to be discussed near the
end of this paper). For this study, Geostationary Environ-
mental Operational Satellite (GOES; GOES 12 in particu-
lar), the Moderate Resolution Infrared Spectrometer
(MODIS), and Meteosat Second Generation’s (MSG) Spin-
ning Enhanced Visible and Infrared Imager (SEVIRI)
instruments are used. This paper investigates new techni-
ques for detection of features using data from these three
meteorological satellites via an unsupervised clustering
approach. The identification procedure is performed
through the use of statistical clustering which invokes an
expert labeling of defined ‘‘clusters’’ of pixels with similar

properties in the visible (VIS) and infrared (IR) spectrum.
Clusters that are identified as cumulus clouds in various
stages of growth are labeled as such across multiple satellite
scenes. Once trained, the algorithm is automated to high-
light only cumulus across any satellite image the method is
applied to. In the present study, GOES 12, MSG SEVIRI,
and MODIS imagery for similar scenes are presented to
show the relative portability of this method to various
satellite platforms.
[3] As proof of functionality, the CCM has been tested for

several years as part of the Satellite Convection Analysis
and Tracking (SATCAST) System. SATCAST currently
provides 0- to 1-h forecasts of convective initiation (CI)
using Imager data from GOES satellites [Mecikalski and
Bedka, 2006]. SATCAST relies on determining the location
of cumulus in varying stages of growth, from ‘‘fair weath-
er’’ to ‘‘towering’’ (e.g., cumulus humulus). Once these
clouds have been identified (among the many other cloud
types within a visible satellite image), focused monitoring
of the Lagrangian evolution of 1-km-resolution cumulus can
be done as they grow, glaciate, precipitate, and produce
lightning. Cumulus cloud tracking is accomplished using
the Bedka and Mecikalski [2005] methodology for produc-
ing very dense, ‘‘mesoscale’’ atmospheric motion vectors
(AMVs). The Bedka and Mecikalski [2005] AMV proce-
dure follows from the more traditional ‘‘cloud motion’’
winds work of Velden et al. [1997, 1998] and Dunion and
Velden [2002].
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[4] Several aspects of the GOES data stream are used
within SATCAST to form satellite infrared–CI relation-
ships: cloud growth rates via IR cloud top temperature (TB)
changes @(10.7 mm TB)/@t, and glaciation via 10.7 mm TB,
13.3–10.7 mm, and @(13.3–10.7 mm)/@t [Mecikalski and
Bedka, 2006]. Currently, the SATCAST procedure is being
tested within several systems that monitor for CI on 0- to
2-h timescales as part of the Advanced Satellite Aviation
Weather (ASAP) initiative [Mecikalski et al., 2007]. These
include the ‘‘AutoNowcaster’’ [Mueller et al., 2003] and the
deterministic 0- to 2-h Tactical Convective Weather Fore-
cast (TCWF) as part of the FAA’s Corridor Integrated
Weather System (CIWS) currently operated by MIT Lincoln
Laboratory in a concept exploration mode [Evans et al.,
2004]. The CIWS system is used by air traffic personnel to
improve traffic flow on jet routes, and to provide proactive
reroutes when convective weather impacts their capacity
[Wolfson et al., 2004]. SATCAST is also being developed
for use with the Meteosat Second Generation (MSG)
satellite. Again, proof of concept for the CCM, as presented
herein, partly comes from the use of CI nowcasts by the
SATCAST algorithm within existing, sophisticated systems,
as well as by various end users including regional National
Weather Service Forecast Offices (NWSFO). We refer the
reader to the works Mecikalski and Bedka [2006] and
Mecikalski et al. [2007] for examples of SATCAST.
Validation of SATCAST has recently been performed by
Mecikalski et al. [2008].
[5] The clustering algorithm developed here is tested on

the VIS and IR channels on GOES (4 IR channels), MODIS
(18 IR channels of the possible 36 available) and MSG
(9 IR channels) data as a means of comparing how this
method may be applied to real-time imagery.
[6] This paper proceeds as follows: Section 2 provides

background into classification methods designed for use
with satellite-based data. Section 3 describes the data used
in this study, while section 4 outlines the methodology.
Examples are presented in section 5 and the study is
discussed and concluded in section 6.

2. Background

[7] Using aircraft and satellite observations and numeri-
cal cloud models, a number of studies have examined
various aspects of cloud field structure [Plank, 1969; Welch
et al., 1988; Cahalan and Joseph, 1989; Ramirez and Bras,
1990; Sengupta et al., 1990; Joseph and Cahalan, 1990;
Weger et al., 1992; Zhu et al., 1992; Kuo et al., 1993; Nair
et al., 1998; Han and Ellingson, 1999; Nair et al., 2001].
Identification of a particular cloud type (or types within a
given class of clouds—stratus, cumulus, cirrus) has many
potential applications. One, as noted above, is in aviation
systems that attempt to forecast for hazards related to
thunderstorms. These include the AutoNowcaster and
CIWS to name a couple. The hazards include turbulence,
strong wind shear, reduced visibility and heavy precipita-
tion. Other likely areas in which delineation of atmospherics
is important include the identification of aerosols and
volcanic ash clouds, given that aerosols and ash come in
a variety of forms and compositions. Aerosols have proven
effects on human and plant health [Pope et al., 1995], while
volcanic ash is an aviation safety hazard [Casadevall, 1993].

[8] There are other areas that would benefit from im-
proved understanding of boundary layer cumulus cloud
field structure, such as parameterization of shallow convec-
tion in general circulation models (GCMs). Since shallow
convection is strongly influenced by surface characteristics,
areas of significant land use change are expected to show
indications of local climate modification [Nair et al., 2000].
Statistical descriptions of the temporal variability of cloud
field properties, useful for parameterization in larger-scale
models, are not currently available [Joseph and Cahalan,
1990; Nair et al., 1998; Han and Ellingson, 1999]. Studies
suggest microphysical properties of cloud fields may be
linked to atmospheric dynamic and thermodynamic structure
[Sykes and Henn, 1989;Weckwerth et al., 1997; Rosenfeld et
al., 2008]. Knowledge of such relationships would be useful
for parameterization of cloud field characteristics in large-
scale models, as well as for short-term (0–6 h) weather
forecasting. Satellite data are ideal to further our understand-
ing of the issues related to boundary layer cumulus cloud
field characteristics. In particular, Landsat, ASTER and
Ikonos imagery can be used to resolve high-resolution
features (30–100 m), data from theMODIS have capabilities
to resolve features from (250 m to 1 km), and geostationary
data can resolve cloud properties at 1–4 km with the added
value of measuring their temporal variations. Note that the
analysis of large volumes of data is necessary to develop
good statistical descriptions of cloud field structure. This
requires the use of automated methods for identifying cumu-
lus cloud fields in satellite imagery.
[9] Supervised classification techniques utilizing neural

networks, maximum likelihood, and other algorithms have
proven successful in cloud detection and classification
[Baum et al., 1997; Berendes et al., 1999]. Traditional
supervised techniques require the construction of a large
database of training samples that must be selected from
imagery and correctly labeled by an expert analyst. Accu-
rate and consistent labeling of training samples can be a
tedious, time-consuming, and error-prone process. As a
basis for improved efficiency, studies that capitalize on
the textural and spectral signatures of clouds have been
used to classify cloud high-resolution Landsat multispectral
imagery [see, e.g., Chen et al., 1989; Wielicki and Welch,
1986; Welch and Wielicki, 1989]. However, the classifica-
tion schemes presented in these studies suffer from the
limitation that they are trained for a specific environment,
such as for maritime [Bankert, 1994], tropical [Shenk et al.,
1976; Inoue, 1987], or polar [e.g., Ebert,1987, 1989; Key
and Barry, 1989; Key, 1990; Welch et al., 1989, 1992;
Rabindra et al., 1992; Tovinkere et al., 1993] regions. Peak
and Tag [1992] developed a method of cloud classification
based on a method using a cloud classification database,
image segmentation and neural network identification. The
Peak and Tag [1992] approach uses VIS and IR data from
GOES and the advanced very high resolution radiometer
(AVHRR) satellites. Tag et al. [2000] described an auto-
mated cloud classification system using AVHRR data for
use in the interpretation of synoptic-scale events as an aid in
forecasting. Their approach is based on a 1-nearest neighbor
classifier, in which comparisons are made to a cloud type
database selected by human experts, henceforth comprising
a supervised classification system. A method similar to the
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Tag et al. [2000] approach has been implemented on real-
time GOES imagery (see http://www.nrlmry.navy.mil).
[10] Unsupervised classification techniques utilize various

distance or similarity metrics in order to segment imagery
into spatially or spectrally similar groups or clusters. Cluster
membership statistics are computed from sample imagery
and clusters are determined on the basis of a cluster distance
or similarity metric. Resultant clusters are initially unlabeled
and must be identified and labeled by an expert.
[11] The Standard Deviation Limited Adaptive Clustering

(SDLAC) technique is an iterative, statistically based
method that is similar to the ISODATA clustering algorithm
[seeGonzalez andWintz, 1977]. However, unlike ISODATA,
SDLAC does not require initial guesses for cluster centers.
The SDLAC algorithm implements an iterative standard
deviation threshold adjustment along with several iterative
adjustments to the cluster centers. In essence, new clusters
are created during each iteration of the algorithm as the
cluster centers and thresholds are refined. The SDLAC
method has been applied successfully for detection and
classification purposes. A convective cloud mask has been
created using GOES data. SDLAC has been used on
MODIS to detect volcanic ash plumes and to identify
tropopause penetration from deep convective updrafts (also
known as ‘‘overshooting tops’’).
[12] The physical information one can glean from the

clustering algorithm is the composition of the cluster centers
themselves. For example, the ‘‘cumulus cloud’’ class is
defined by a set of clusters, with each cluster consisting of
a mean and standard deviation for each channel (or feature,
i.e., channel difference, ratio, texture, etc.). Upon decom-
position of a cluster, the range of each individual feature is
determined. One particular ‘‘cumulus’’ cluster may have a
high GOES channel 1 (visible data) variability, with a
medium standard deviation and a simultaneously large
channel 1 contrast value and a large standard deviation.
This type of information could be interpreted physically, yet
in practice it may be difficult to know which channels are
most important in defining a particular class.
[13] One of the properties of SDLAC is that several

clusters may be formed for the same class. Sometimes the
defining difference between clusters is produced by varia-
tions in a particular feature not of interest for the given
application. For instance, in the CCM, there is no need to
differentiate between land, water, and other background
classes based upon reflectance since we are only concerned
with clouds; however, since reflectance is a feature, extra-
neous clusters are defined because of variations of reflec-
tance of which the land surface plays a part. Fortunately,
extraneous clusters can either be merged together into
meaningful classes or removed during the cluster labeling
process.
[14] The SDLAC clustering algorithm is an unsupervised

classification technique that groups statistically similar
pixels in the data. Our implementation of the algorithm is
not designed to determine which features are most impor-
tant (physically) for a given class, but simply finds the best
fit for each cluster on the basis of the clustering algorithm. It
is important to note that other algorithms are much better
suited for direct physical interpretations, such as ontologies

and decision trees, where the classification is defined
physically from the start.
[15] Feature selection is one way to algorithmically

determine important features for defining specific classes.
This method provides insight (thresholds, ranges, etc.) into
the effect of specific features on the classification accuracy.
In order to do feature selection, however, one requires
labeled training data, something that is also a requirement
for a supervised technique. Clustering algorithms can be
used to effectively ‘‘bootstrap’’ training data, yet that is
beyond the scope of what we were trying to accomplish in
this study. The strength of the clustering algorithm is its
automatic nature that does not require a preconceived
definition of each class. Clustering allows pixels to be
grouped ‘‘naturally’’ according to the input features used.
Clusters can then be grouped together into logical classes,
which is much easier than selecting training samples for
individual classes as required for supervised learning
techniques.

3. Data

[16] The data used in this study from GOES 12 are one
VIS channel (central wavelength 0.65 mm) and four IR
channels (3.9, 6.5, 10.7, and 13.3 mm). All GOES 12
infrared data are linearly interpolated to 1-km resolution
(away from the native 4-km IR resolution) so all spectral
channels are the same spatial resolution for processing. On
SEVIRI, all 12 channels are used, with one broadband VIS
channel (central wavelength 0.7 mm) and 8 IR and 3 visible
channels (0.6, 0.8, 1.6, 3.9, 6.2, 7.3, 8.7, 9.7, 10.8, 12.0, and
13.4 mm). The SEVIRI broadband visible channel is at the
native 1-km resolution, and all other channels are replicated
to 1 km resolution. From MODIS, the 1-km-resolution
channels used consist of the following wavelengths: 0.64,
1.37 3.75, 3.96, 6.72, 7.3, 8.5, 9.7, 11.0, 12.0, and 13.3 mm.
The MODIS channels were chosen to be similar to the
channels available in SEVIRI. The use of all 1-km data
allows us to compare clustering, cloud identification results
without resolution-related issues.
[17] In addition to the spectral channels, a new feature

was created by computing an 11 � 11 neighborhood grey
level difference vector (GLDV) based spatial texture for
each pixel in the high-resolution visible channel of each
instrument. Grey level differences are computed over the
11 � 11 pixel grid using a distance of 1 pixel with angles
of 0�, 45�, and 90�, producing a gray level difference vector
containing the counts of each gray level difference normal-
ized by the number of differences computed. The ‘‘con-
trast’’ measure is defined as

CON ¼
Xn
i¼1

i2 � GLDV ið Þ; ð1Þ

where n is the number of gray level differences. The GLDV
contrast feature is useful for finding cumulus and
stratocumulus clouds [Welch et al., 1988].
[18] The training phase of the classifiers utilizes imagery

that contains clouds of various types with emphasis on
convective clouds. The training data sets for the classifiers
consist of daytime imagery from over 450 GOES 12 scenes,
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42 MODIS scenes, and 75 MSG scenes. The MODIS
classifier was compared to coincident GOES 12 and SEVIRI
images as a means of demonstrating that similar cloud
identification can be obtained from two different sensors
with different spectral channels.

4. Methodology

[19] Image clustering using SDLAC begins with the
selection and computation of image features. Features are
imager data specific, but may include imager channels,
channel differences and ratios, vegetation indices, textures,
and other derived features. Features are normalized to a
fixed range (0–255) on the basis of either a computed or
specified physical range.
[20] SDLAC clustering of a satellite scene is performed

on a pixel-by-pixel basis. First, a subset of the pixels in the
scene is selected for processing. The first pixel processed
forms the seed for the first cluster. As additional pixels are
processed, they are tentatively added to each existing
cluster. Tentative feature means m*k (q) and standard devia-
tions s*k (q) are computed for each cluster k according to

mk
* qð Þ ¼ 1

nk þ 1
Xq i*; j*ð Þ þ nkmk qð Þ
� �

sk* qð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nk � 1
nks2

k þ
nk

nk þ 1
Xq i*; j*ð Þ � mk qð Þ
� �2� �s

ð2Þ

where k is the cluster, nk is the number of pixels in cluster k,
q is the feature (i.e., channel), and Xq(i*,j*) is the
normalized value of feature q at pixel (i*,j*). The tentative
feature means and standard deviations are used as a basis for
constructing clusters and determining cluster membership.
[21] The SDLAC method does not require any initial

guesses at the number and position of the image clusters.
Instead of initial cluster guesses, initial standard deviation
thresholds q(q) are specified for each feature. The standard
deviation thresholds are arbitrary numbers between 0 and
255. Large q(q) values produce fewer clusters with larger
standard deviations while smaller q(q) values produce more
numerous, tighter clusters. Typically, smaller q(q) values are
chosen initially, and during the iterative clustering algorithm
the q(q) values are gradually increased until a stable cluster
set is formed.
[22] The standard deviation limiting function, Qk(q), one

of the two metrics [Levine and Shaheen, 1981] used to
determine cluster membership, is defined by

Qk pð Þ ¼ Sk qð Þq qð Þ; ð3Þ

where

Sk qð Þ ¼ 1� sk* qð Þ
C qð Þ

� �
:

Also, C(q) is a scale factor chosen to insure the ratio in Sk(q)
is <1, and q(q) is an adapted standard deviation threshold.
[23] We compute Qk(q) by scaling the standard deviation

thresholds, q(q), by a standard deviation limiting scale
factor Sk(q). As the standard deviation gets larger, Sk(q)
decreases the q(q) values, preventing larger clusters from

absorbing too many pixels. The decrease of q(q) has the
effect of starting new nearby clusters which effectively
splits larger clusters. Conversely, when the standard devia-
tion is low, the smaller cluster will retain most the q(q) value
and new clusters will not form as easily.
[24] The change in cluster means, Dmk(q), is the other

clustering metric used in conjunction with Qk(q). It is
defined by

Dmk qð Þ ¼ Xq i*; j*ð Þ � mk qð Þ


 

 ð4Þ

A single clustering iteration is accomplished by processing
all of the selected pixels in a scene using the following
algorithm.
[25] 1. For each selected pixel Xq(i*,j*), compute tenta-

tive feature means m*k(q) and standard deviations m*k (q).
[26] 2. Compute standard deviation limiting function,

Qk(q).
[27] 3. Compute change in cluster means, Dmk(q).
[28] 4. Determine cluster membership as follows: (1) If

Dmk(q) � Qk(q) for all features q, only in cluster k, merge
pixel with cluster k and update cluster statistics: Dmk(q) =
m*k(q) and sk(q) = m*k (q). (2) If more than one cluster
satisfies case 1, merge to cluster, producing minimum
S[Dmk(q)]

2 and update cluster statistics as in case 1. (3)
If no cluster satisfies case 1 or 2, create a new cluster (seed).
[29] Steps 1–4 are repeated until all pixels are processed.
[30] After a single pass of the clustering algorithm, we are

left with a set of clusters based upon our arbitrary initial q(q)
values. Since the SDLAC algorithm does not initially have
knowledge of the actual distribution of the clusters in the
image, we must devise a method of determining optimal
clustering performance.
[31] Like most clustering techniques, SDLAC is an iter-

ative algorithm. The stability of the clusters is evaluated by
counting the number of pixels that have changed cluster
membership since the previous iteration.
[32] At the end of each iteration, the following procedure

is then applied: (1) For each cluster update, feature means
Dmk(q) and standard deviations sk(q) using only pixels are
added to the clusters during the current iteration; the
updated clusters are used as seeds for the next iteration.
(2) Small clusters containing less than a specified number of
pixels are removed. (3) Clusters with standard deviations of
zero in several features usually represent image noise or
data errors and are removed. (4) The standard deviation
thresholds, q(q), are incremented to aid convergence. (5) If
the percentage of pixels that change cluster membership
since the previous iteration is less than a specified amount,
the image has been clustered successfully and iterations are
stopped. (6) Otherwise, continue iterations until the image is
successfully clustered or fails after the number of iterations
exceeds a specified value.
[33] In practice, it is usually possible to achieve a suc-

cessful clustering of an image by adjusting initial q(q) and
increment values. The initial q(q) and increment values are
data specific, and must be adjusted by experimentation to
achieve a good clustering. If the initial values are too low,
extraneous clusters are formed which may slow down the
convergence process. If the initial values are too high, small
but important clusters may be merged with larger clusters
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and class resolution may be lost. Since the values q(q) can
be incremented during iteration, it is very effective to select
slightly lower initial values and allow the algorithm to find
the optimal value during the iteration process.
[34] The final step in the creation of a cluster-based

classifier is the ‘‘blending’’ of the clusters from individual
images into a single combined cluster set. By considering
clusters as two separate normal distributions, the mean and
standard deviation update equations for the merging of
cluster l into cluster k can be written as

mk
* qð Þ ¼ mknk þ mlnlð Þ

nk þ nl

sk* qð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk þ nlð Þ nk s2

k þ m2
k

� �
þnl s2

l þm2
l

� �� �
� mknk þmlnlð Þ2

nk þ nlð Þ2

s

ð5Þ

[35] The new mean and standard deviation update equa-
tions are applied and blending of the clusters proceeds using
the same iterative algorithm that is applied to cluster the
pixels in individual scenes. The resulting cluster set repre-
sents all of the scenes of the training image set and provides
the basis for the creation of a nonscene specific classifier.
[36] After the clustering is completed, clusters must be

identified and labeled. Labeling of the clusters is done by a
human expert, using the Interactive Visualizer and Image
Classifier for Satellites (IVICS) visualization software
[Berendes et al., 2001]. Physical classes of interest are
identified in the imagery and each cluster is labeled as
one of those class types. Many clusters may be combined
into a single physical class, and unneeded clusters may
remain unlabeled or may be removed entirely.
[37] Finally, the labeled cluster set is used to classify

imagery. Image classification is accomplished by computing
the mean and standard deviation update equation (1) and
applying the cluster membership functions (2) and (3) using
the labeled cluster set as initial clusters. Each individual
pixel in the image is assigned the class label of the cluster to
which it would merge. The standard deviation limiting
function, Qk(q), can either be applied or ignored. If Qk(q)

is applied, the pixel can be labeled as ‘‘unknown’’ if it
would form a new cluster based upon the logic in step 4 of
the clustering algorithm. Conversely, if Qk(q) is ignored,
pixels are simply labeled by the cluster which minimizes
S[Dmk(q)]

2, ensuring that every pixel is labeled as a class.
[38] It has been shown that spatial textures produce

valuable features for cloud detection and classification
[Sengupta et al., 1990]. The gray level difference vector
(GLDV) method is a computationally efficient and effective
method that has been used successfully in cloud classifica-
tion algorithms [Chen et al., 1989]. The GLDV ‘‘contrast’’
measure applied to the GOES visible channel enhances
small-scale spatial variations of reflectance that are indica-
tive of cumulus clouds. Therefore, the GLDV contrast of the
visible GOES 12, MODIS and MSG channel is used as an
additional clustering feature. This textural derived ‘‘channel’’
has proven to be a critical component for identifying daytime
cumulus cloud types.
[39] The iterative SDLAC algorithm can be tuned to

produce very stable clusters using a wide variety of satellite
data types and can be utilized as a tool for cloud identifi-
cation (e.g., cumulus identification for convection initiation
purposes). Applications of the SDLAC algorithm are dis-
cussed in subsequent sections.
[40] There are limits of applicability that are dependent

upon the representative imagery used in the training pro-
cess. For example, if you used only polar imagery to create
and label the clusters, the classifier would not be applicable
to desert imagery simply because there would be no clusters
of the desert classes represented in the polar clusters. The
SDLAC algorithm can be applied with a very specific
focus (i.e., trained for a specific geographic region, season,
or classes) or it can be applied in a very general way
(i.e., trained using a broad set of imagery representing
multiple location, seasons, etc.)

5. Examples

[41] The SDLAC clustering algorithm for GOES 12,
MODIS and SEVIRI sensors is applied to produce a
convective cloud mask for each data type. The clustering

Figure 1. Classes defined by SDLAC convective cloud mask.
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algorithm was applied to a set of images from each sensor
and the resulting clusters were labeled as belonging to seven
different classes. Figure 1 shows a list of the classes along
with associated colors that will be used in subsequent
figures. The classes were defined on the basis of visually
identifiable features in the image. Note that the main goal
was to identify convective clouds (‘‘towering cumulus’’ and
‘‘cumulus’’) in various stages for use in convective now-
casting systems. Toward that end, minimal effort was made
to distinguish cloud types beyond convective types and they
have been grouped into general categories such as ‘‘ice
cloud’’ and ‘‘nonconvective water cloud. ’’Two additional
classes, ‘‘glaciated mature convection’’ and ‘‘overshooting
convective tops, ’’are also being examined for possible
application in turbulence studies.
[42] Figure 2a shows an example GOES channel 1 visible

image over Lake Michigan and the resulting color-coded
SDLAC image can be seen in Figure 2b. The primary
function of this mask (i.e., the detection of convective
clouds) is represented by the dark blue and cyan areas in
Figure 2b. Visual comparison of Figures 2a and 2b shows
that the convective classes (‘‘cumulus’’ and ‘‘towering
cumulus’’) are well detected. Large pink areas of ice cloud

can also be seen in Figure 2. The ice cloud class represents
primarily diffuse (visually fuzzy) ice clouds that are warmer
than glaciated convective tops and produce a low GLDV
contrast value. No glaciated mature convection or over-
shooting tops are visible in the scene.
[43] An MSG SEVIRI example over northern Italy is

shown in Figure 3 with channel 1 shown in Figure 3a and
the SDLAC results in Figure 3b. Visual examination shows
that similarly to the GOES case, the MSG SDLAC mask
detects convective clouds well. Additionally, the MSG
example contains area labeled ‘‘glaciated mature convec-
tion’’ which represent visually diffuse ice clouds at very low
temperatures above a large convective cloud. Some of the
‘‘bumpy’’ texture of the cumulus cloud can be seen through
the ice cloud because of gravity waves from the convective
updraft penetrating the tropopause. The additional channels
in the MSG SEVIRI sensor may be providing more infor-
mation about cloud phase to help make a better distinction
than the GOES version.
[44] MODIS allows for an examination into the benefits

into increased spectral channels, and 1-km infrared spatial
resolution. Figure 4a shows an image over Kansas along
with the corresponding SDLAC mask results in Figure 4b.

Figure 2. (a) GOES 12 visible image centered over Lake Michigan taken at 2100 UTC 3 August 2003
and (b) color-coded SDLAC cloud mask (refer to Figure 1 for color code labels).

Figure 3. (a) MSG SEVERI image centered over northern Italy taken at 1310 UTC 25 June 2006 and
(b) SDLAC convective cloud mask (refer to Figure 1 for color code labels).
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As in the MSG and GOES cases, the smaller convective
clouds shown in blue in Figure 4b are well represented.
Large areas of ‘‘nonconvective water cloud, ’’in this case
stratocumulus, are shown in dark yellow. The stratocumulus

is warmer with lower GLDV texture. The mature convective
areas are present in the anvil of the large thunderstorm. The
upper right corner of Figure 4b shows a red area of
‘‘overshooting mature convective tops,’’ characterized by

Figure 4. (a) MODIS image centered over northern Kansas taken at 1815 UTC 4 May 2003 and (b)
SDLAC convective cloud mask (refer to Figure 1 for color code labels).

Figure 5. Example of an ‘‘overshooting top’’ mask for active convection. Data are from GOES 12: (a) a
three-band enhanced color composite with channel 4 inverted in red, channel 3 in green, and channel 1 in
blue; (b) an enhanced channel 1 visible image; (c) a three-band enhanced color composite with GLDV
texture of channel 1 in red, channel 1 in green, and channel 2 inverted in blue; and (d) the ‘‘overshooting
top’’ mask with red indicating tops. Data are from 2315 UTC 10 May 2003 over Illinois.
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extremely low temperature with high GLDV textures and
generally high channel 1 (0.6 mm) reflectance. The addi-
tional channel information present in MODIS data may aid
in the detection of overshooting tops.
[45] The tropopause penetrations within deep convection,

that is, ‘‘overshooting mature convective tops’’ are also
detectable in GOES and MSG data using the SDLAC
method. A version of the SDLAC clustering mask was
produced specifically for the purpose of detecting over-
shooting tops in GOES imagery. Figure 5 shows an example
of GOES imagery with active convection over Illinois.
Figure 5a shows a three-band color composite of the active
system while Figure 5b shows the same area in the visible
channel. Areas of overshooting tops are very cold and have
a rougher textured appearance due to the convection pro-
truding above the cirrus anvil. Figure 5c shows a three-band
color composite with channel 1 in green, channel 2 inverted
in blue, and the GLDV texture of channel 1 in red. Using
this color scheme, the areas of high GLDV texture are
clearly visible as red and yellow areas. The highly textured
areas correspond to the overshooting tops and smaller
convective clouds. Figure 5d shows the overshooting tops
detected by the SDLAC algorithm in red. Clearly, the
overshooting tops correspond well with the areas of high
channel 1 GLDV texture, but the smaller convective clouds
are eliminated, probably on the basis of temperature. Ac-
curate detection of overshooting tops allows for identifica-
tion of strong convection, and can be used as a tool for
identification for the potential for aircraft turbulence. This
has a strong application for aviation safety [see Mecikalski
et al., 2007]. There appears to be some areas shown which
may not be overshooting tops, however maybe gravity
waves or other areas that may be slightly penetrating the
tropopause. It is important to note that the areas highlight
will be highly turbulent and thus still important to aviation
safety.

6. Conclusions

[46] SDLAC is a cluster-based cloud classification tech-
nique that is currently being used within an operational
framework. While it is difficult to validate a ‘‘cloud mask’’
or other cloud classifications because of the subjective
nature of cloud classification and the lack of ‘‘truth’’ data,
the efficacy of the SDLAC convective cloud mask can be
seen by subjective examination of the imagery. Addition-
ally, the operational results of the SATCAST algorithm
objectively show that the SDLAC convective cloud mask
is accurately detecting the convectively active clouds
[Mecikalski et al., 2008], which was the primary design
objective. The general nature of the SDLAC clustering
algorithm produces a classification technique that is not
satellite platform dependent. As satellite technology
improves (as in the case of GOES R [Schmit et al.,
2005]), this method allows easy addition of the new spectral
channels for possible improvement to cloud classification.
[47] Using many cases within different seasons and

different times, the statistical information of each cluster
becomes robust. In our examples with GOES and MSG, we
used sufficient cases over various seasons and viewing
angles, reducing dependencies on time of the year and
location. This enhances the utility of the SDLAC method

as a tool for cloud identification within automated systems
such as SATCAST. The SDLAC algorithm has been suc-
cessfully applied as a detection algorithm for overshooting
convective cloud tops. This detection capability has a
potential aviation safety application for turbulence detection.
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